• Acta Optica Sinica (Online)
  • Vol. 2, Issue 4, 0406001 (2025)
Yang Yu1,2,3, Jiawen Xiao1,2,3, Xianqing Zang1,2,3, Yusong Jiao1,2,3, and Chunqing Gao1,2,3,*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2National Key Laboratory of Near-Surface Detection, Beijing 100072, China
  • 3Key Laboratory of Information Photonics Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/AOSOL240468 Cite this Article Set citation alerts
    Yang Yu, Jiawen Xiao, Xianqing Zang, Yusong Jiao, Chunqing Gao. Orthogonally Polarized Dual-Frequency Er ∶ YAG Laser (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(4): 0406001 Copy Citation Text show less
    References

    [1] Jiao M X, Jiang F, Su J et al. Design of synthetic-wave absolute-distance interferometric system using two-cavity dual-frequency Nd∶‍YAG laser with large frequency-difference[J]. Laser & Optoelectronics Progress, 60, 0312025(2023).

    [2] Tan Y D, Xu X, Zhang S L. Precision measurement and applications of laser interferometry[J]. Chinese Journal of Lasers, 48, 1504001(2021).

    [3] Wang X, Fritsche H, Lux O et al. Dual-wavelength Q-switched Er∶‍YAG laser around 1.6 μm for methane differential absorption lidar[J]. Laser Physics Letters, 10, 115804(2013).

    [4] Edouart D, Gibert F, Cénac C. 1.645 µm Er∶‍YAG single-mode dual-wavelength emitter for CH4 differential absorption lidar[J]. Optics Letters, 49, 5997-6000(2024).

    [5] Zhao P, Ragam S, Ding Y J et al. Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser[J]. Optics Letters, 35, 3979-3981(2010).

    [6] Li J Y, Tan Y D, Zhu K Y et al. Dual-frequency solid-state microchip laser and its frequency difference control[J]. Optical Engineering, 58, 116105(2019).

    [7] Zhu S S, Zhang S L, Liu W X et al. Laser-micro-engraving method to modify frequency difference of two-frequency HeNe lasers[J]. Acta Physica Sinica, 63, 064201(2014).

    [8] Owyoung A, Esherick P. Stress-induced tuning of a diode-laser-excited monolithic Nd∶YAG laser[J]. Optics Letters, 12, 999-1001(1987).

    [9] McKay A, Dawes J M. Tunable terahertz signals using a helicoidally polarized ceramic microchip laser[J]. IEEE Photonics Technology Letters, 21, 480-482(2009).

    [10] Zhang Y T, Hu M, Xu M M et al. A power balanced dual-wavelength Nd∶‍GdVO4 laser with 0.6 THz frequency separation[J]. IEEE Photonics Journal, 14, 1547206(2022).

    [11] Wang K X, Gao C Q, Lin Z F et al. 1645 nm coherent Doppler wind lidar with a single-frequency Er∶YAG laser[J]. Optics Express, 28, 14694-14704(2020).

    [12] Stoneman R C, Hartman R, Malm A I et al. Coherent laser radar using eyesafe YAG laser transmitters[J]. Proceedings of SPIE, 5791, 167-174(2005).

    [13] Wang Q, Gao C Q. Research progress on eye-safe all-solid-state single-frequency lasers[J]. Chinese Journal of Lasers, 48, 0501004(2021).

    [14] Li K, Ren T W, Wu C T et al. Development of 1.6-μm Er∶‍YAG solid-state laser for lidar[J]. Microwave and Optical Technology Letters, 65, 1525-1534(2023).

    [15] Spariosu K, Leyva V, Reeder R A et al. Efficient Er∶YAG laser operating at 1645 and 1617 nm[J]. IEEE Journal of Quantum Electronics, 42, 182-186(2006).

    [16] Wang R, Gao C Q, Zhu L N et al. Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er∶‍YAG laser at 1617 and 1645 nm[J]. Laser Physics Letters, 10, 025802(2013).

    [17] Yao B Q, Dai T Y, Deng et al. Tunable single-longitudinal-mode Er∶‍YAG laser using a twisted-mode technique at 1.6 μm[J]. Laser Physics Letters, 12, 025004(2015).

    [18] Jeon M Y, Kim N, Shin J et al. Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation[J]. Optics Express, 18, 12291-12297(2010).

    [19] Li Y B, Xing Y X, Gao Y et al. A dual-frequency continuous wave Doppler lidar for velocity measurement at far distance[J]. Microwave and Optical Technology Letters, 63, 1588-1594(2021).

    [20] Stoneman R C, Hartman R, Schneider E A et al. Eyesafe diffraction-limited single-frequency 1-ns pulsewidth Er:‍YAG laser transmitter[J]. Proceedings of SPIE, 6552, 65520H(2007).

    [21] Zhu L N, Gao C Q, Wang R et al. Resonantly pumped 1.645 μm single longitudinal mode Er∶‍YAG laser with intracavity etalons[J]. Applied Optics, 51, 1616(2012).

    [22] Ma Y Y, Li Y J, Feng J X et al. High-power stable continuous-wave single-longitudinal-mode Nd∶‍YVO4 laser at 1342 nm[J]. Optics Express, 26, 1538-1546(2018).

    [23] Chen S B, Zhou S H, Zhao H et al. 10 W linearly polarized ring cavity configuration CW single-frequency laser[J]. Acta Optica Sinica, 30, 793-796(2010).

    Yang Yu, Jiawen Xiao, Xianqing Zang, Yusong Jiao, Chunqing Gao. Orthogonally Polarized Dual-Frequency Er ∶ YAG Laser (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(4): 0406001
    Download Citation