• Advanced Photonics
  • Vol. 6, Issue 5, 056012 (2024)
Tingge Yuan1,†, Jiangwei Wu1, Xueyi Wang1, Chengyu Chen1..., Hao Li1, Bo Wang1, Yuping Chen1,* and Xianfeng Chen1,2|Show fewer author(s)
Author Affiliations
  • 1Shanghai Jiao Tong University, School of Physics and Astronomy, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Shandong Normal University, Collaborative Innovation Center of Light Manipulations and Applications, Jinan, China
  • show less
    DOI: 10.1117/1.AP.6.5.056012 Cite this Article Set citation alerts
    Tingge Yuan, Jiangwei Wu, Xueyi Wang, Chengyu Chen, Hao Li, Bo Wang, Yuping Chen, Xianfeng Chen, "Chip-scale nonlinear bandwidth enhancement via birefringent mode hybridization," Adv. Photon. 6, 056012 (2024) Copy Citation Text show less
    References

    [1] S. J. B. Yoo. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol., 14, 955-966(1996).

    [2] Q. Guo et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat. Photonics, 14, 955-966(2022).

    [3] Y. Adachi et al. Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett., 99, 180503(2007).

    [4] J. Leach et al. Quantum correlations in optical angle-orbital angular momentum variables. Science, 329, 662-665(2010).

    [5] H.-K. Lo, M. Curty, K. Tamaki. Secure quantum key distribution. Nat. Photonics, 8, 595-604(2014).

    [6] M. B. Nasr et al. Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. Phys. Rev. Lett., 100, 183601(2008).

    [7] U. A. Javid et al. Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett., 127, 183601(2021).

    [8] N. E. Yu et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO at the communications band. Opt. Lett., 27, 1046-1048(2002).

    [9] J. Zhang et al. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN. Opt. Express, 16, 6957-6962(2008).

    [10] M. Gong et al. All optical wavelength broadcast based on simultaneous type I QPM broadband SFG and SHG in MgO:PPLN. Opt. Lett., 35, 2672-2674(2010).

    [11] Y. Chen et al. 3Type I quasi-phase-matched blue second harmonic generation with different polarizations in periodically poled LiNbO. Opt. Laser Technol., 38, 19-22(2006).

    [12] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [13] J. Lin et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910-1936(2020).

    [14] A. Boes et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science, 379, eabj4396(2023).

    [15] Z. Ma et al. Ultrabright quantum photon sources on chip. Phys. Rev. Lett., 125, 263602(2020).

    [16] J.-Y. Chen et al. Photon conversion and interaction in a quasi-phase-matched microresonator. Phys. Rev. Appl., 16, 064004(2021).

    [17] C. Wang et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [18] J.-Y. Chen et al. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Contin., 2, 2914-2924(2019).

    [19] J. Zhao et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express, 28, 19669-19682(2020).

    [20] C. Wang et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2018).

    [21] G. Li et al. Broadband sum-frequency generation using d33 in periodically poled LiNbO thin film in the telecommunications band. Opt. Lett., 42, 939-942(2017). https://doi.org/10.1364/OL.42.000939

    [22] L. Ge et al. Broadband quasi-phase matching in a MgO:PPLN thin film. Photonics Res., 6, 954-958(2018).

    [23] M. Jankowski et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40-46(2020).

    [24] J. Mishra et al. Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate. Opt. Express, 30, 32752-32760(2022).

    [25] U. A. Javid et al. Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett., 127, 183601(2021).

    [26] S. Zhu et al. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 278, 843-846(1997).

    [27] A. Paul et al. Quasi-phase-matched generation of coherent extreme-ultraviolet light. Nature, 421, 51-54(2003).

    [28] B.-Q. Chen et al. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys. Rev. Lett., 115, 083902(2015).

    [29] K. Huang et al. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun., 13, 1077(2022).

    [30] C. Wang et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).

    [31] J. Huang et al. Quasi-group-velocity matching using integrated-optic structures. Opt. Lett., 29, 2482-2484(2004).

    [32] X. Xie, J. Huang, M. M. Fejer. Narrow-linewidth near-degenerate optical parametric generation achieved with quasi-group-velocity-matching in lithium niobate waveguides. Opt. Lett., 31, 2190-2192(2006).

    [33] D. Mao et al. Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation. Nat. Commun., 12, 6712(2021).

    [34] J. P. Lourdesamy et al. Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys., 18, 59-66(2021).

    [35] Y.-D. Cui et al. Dichromatic ’breather molecules’ in a mode-locked fiber laser. Phys. Rev. Lett., 130, 153801(2023).

    [36] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [37] M. Zhang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [38] X. Han et al. Mode and polarization-division multiplexing based on silicon nitride loaded lithium niobate on insulator platform. Laser Photonics Rev., 16, 2100529(2022).

    [39] J. Wang et al. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photonics J., 12, 2200310(2020).

    [40] X. Wang et al. Enhanced temperature sensing by multi-mode coupling in an on-chip microcavity system. Laser Photonics Rev., 18, 2300760(2024).

    [41] J. Lin et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [42] T. Yuan et al. Chip-scale spontaneous quasi-phase matched second harmonic generation in a micro-racetrack resonator. Sci. China Phys. Mech. Astron., 66, 284211(2023).

    [43] A. Pan et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express, 27, 35659-35669(2019).

    [44] W.-C. Liu et al. Modal analysis of arbitrary-oriented ridge waveguides in x-cut lithium niobate thin film. J. Opt., 24, 064002(2022).

    Tingge Yuan, Jiangwei Wu, Xueyi Wang, Chengyu Chen, Hao Li, Bo Wang, Yuping Chen, Xianfeng Chen, "Chip-scale nonlinear bandwidth enhancement via birefringent mode hybridization," Adv. Photon. 6, 056012 (2024)
    Download Citation