• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036011 (2025)
Wenting Wang1,2,†, Wenzheng Liu1,*, Hao Liu1, Tristan Melton1..., Alwaleed Aldhafeeri1, Dong-Il Lee1, Jinghui Yang1, Abhinav Kumar Vinod1, Jinkang Lim1, Yoon-Soo Jang1, Heng Zhou3, Mingbin Yu4,5, Patrick Guo-Qiang Lo4,6, Dim-Lee Kwong4, Peter DeVore7, Jason Chou7, Ninghua Zhu8 and Chee Wei Wong1,*|Show fewer author(s)
Author Affiliations
  • 1University of California Los Angeles, Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, Los Angeles, California, United States
  • 2Beijing Institute of Technology, School of Optics and Photonics, Mesoscopic Optics and Advanced Instruments Laboratory, Beijing, China
  • 3University of Electronic Science and Technology of China, Key Lab of Optical Fiber Sensing and Communication Networks, Chengdu, China
  • 4Institute of Microelectronics, A*STAR, Singapore
  • 5Shanghai Institute of Microsystem and Information Technology, Shanghai Industrial Technology Research Institute, State Key Laboratory of Functional Materials for Informatics, Shanghai, China
  • 6Advanced Micro Foundry, Singapore
  • 7Lawrence Livermore National Laboratory, Livermore, California, United States
  • 8Nankai University, Institute of Intelligent Photonics, Tianjin, China
  • show less
    DOI: 10.1117/1.APN.4.3.036011 Cite this Article Set citation alerts
    Wenting Wang, Wenzheng Liu, Hao Liu, Tristan Melton, Alwaleed Aldhafeeri, Dong-Il Lee, Jinghui Yang, Abhinav Kumar Vinod, Jinkang Lim, Yoon-Soo Jang, Heng Zhou, Mingbin Yu, Patrick Guo-Qiang Lo, Dim-Lee Kwong, Peter DeVore, Jason Chou, Ninghua Zhu, Chee Wei Wong, "Mapping ultrafast timing jitter in dispersion-managed 89 GHz frequency microcombs via self-heterodyne linear interferometry," Adv. Photon. Nexus 4, 036011 (2025) Copy Citation Text show less
    References

    [1] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, 267(2020). https://doi.org/10.1126/science.aay3676

    [2] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019). https://doi.org/10.1038/s41566-019-0358-x

    [3] M. Lezius et al. Space-borne frequency comb metrology. Optica, 3, 1381-1386(2016). https://doi.org/10.1364/OPTICA.3.001381

    [4] J. Lee et al. Testing of a femtosecond pulse laser in outer space. Sci. Rep., 4, 5134-5137(2014). https://doi.org/10.1038/srep05134

    [5] I. Coddington et al. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009). https://doi.org/10.1038/nphoton.2009.94

    [6] I. Kudelin et al. Photonic chip-based low-noise microwave oscillator. Nature, 627, 534-539(2024). https://doi.org/10.1038/s41586-024-07058-z

    [7] W. T. Wang et al. Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation. Nat. Commun., 13, 5123(2022). https://doi.org/10.1038/s41467-022-32739-6

    [8] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, 8083(2018). https://doi.org/10.1126/science.aan8083

    [9] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014). https://doi.org/10.1038/nphoton.2013.343

    [10] A. Tikan et al. Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys., 17, 604-610(2021). https://doi.org/10.1038/s41567-020-01159-y

    [11] V. Brasch et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016). https://doi.org/10.1126/science.aad4811

    [12] Q. Liu et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020). https://doi.org/10.1038/s41566-020-0617-x

    [13] X. W. Liu et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun., 12, 5428(2021). https://doi.org/10.1038/s41467-021-25751-9

    [14] Y. He et al. High-speed tunable microwave-rate soliton microcomb. Nat. Commun., 14, 3467(2023). https://doi.org/10.1038/s41467-023-39229-3

    [15] L. Chang et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 9, 1869(2018). https://doi.org/10.1038/s41467-020-15005-5

    [16] M. H. Zhang et al. Strong interactions between solitons and background light in Brillouin-Kerr microcombs. Nat. Commun., 15, 1661(2024). https://doi.org/10.1038/s41467-024-46026-z

    [17] A. S. Raja et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019). https://doi.org/10.1038/s41467-019-08498-2

    [18] B. Q. Shen et al. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020). https://doi.org/10.1038/s41586-020-2358-x

    [19] W. Jin et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultrahigh-Q microresonators. Nat. Photonics, 15, 346-353(2021). https://doi.org/10.1038/s41566-021-00761-7

    [20] P. Marin-Palomo et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017). https://doi.org/10.1038/nature22387

    [21] A. Fülöp et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018). https://doi.org/10.1038/s41467-018-04046-6

    [22] B. Corcoran et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020). https://doi.org/10.1038/s41467-020-16265-x

    [23] J. Riemensberger et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020). https://doi.org/10.1038/s41586-020-2239-3

    [24] E. Obrzud et al. A microphotonic astrocomb. Nat. Photonics, 13, 31-35(2019). https://doi.org/10.1038/s41566-018-0309-y

    [25] G. Suh et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25-30(2019). https://doi.org/10.1038/s41566-018-0312-3

    [26] G. Suh et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016). https://doi.org/10.1126/science.aah6516

    [27] A. Dutt et al. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018). https://doi.org/10.1126/sciadv.1701858

    [28] M. J. Yu et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018). https://doi.org/10.1038/s41467-018-04350-1

    [29] Y.-S. Jang et al. Nanometric precision distance metrology via hybrid spectrally-resolved and homodyne interferometry in a single-soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021). https://doi.org/10.1103/PhysRevLett.126.023903

    [30] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018). https://doi.org/10.1126/science.aao1968

    [31] P. Trocha et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018). https://doi.org/10.1126/science.aao3924

    [32] C. H. Lao et al. Quantum decoherence of dark pulses in optical microresonators. Nat. Commun., 14, 1802(2023). https://doi.org/10.1038/s41467-023-37475-z

    [33] E. Lucas et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020). https://doi.org/10.1038/s41467-019-14059-4

    [34] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021). https://doi.org/10.1038/s41586-020-03070-1

    [35] D. Jeong et al. Ultralow jitter silica microcomb. Optica, 7, 1108(2020). https://doi.org/10.1364/OPTICA.390944

    [36] X. Y. Xu et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021). https://doi.org/10.1038/s41586-020-03063-0

    [37] E. Lucas et al. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A, 95, 043822(2017). https://doi.org/10.1103/PhysRevA.95.043822

    [38] J. R. Stone et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018). https://doi.org/10.1103/PhysRevLett.121.063902

    [39] A. Aldhafeeri et al. Low phase noise K-band signal generation using polarization diverse single-soliton integrated microcombs. Photonics Res., 12, 1175-1185(2024). https://doi.org/10.1364/PRJ.521282

    [40] Q.-F. Yang et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun., 12, 1442(2021). https://doi.org/10.1038/s41467-021-21658-7

    [41] Y. Bai et al. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett., 126, 063901(2021). https://doi.org/10.1103/PhysRevLett.126.063901

    [42] J. R. Stone, S. B. Papp. Harnessing dispersion in soliton microcombs to mitigate thermal noise. Phys. Rev. Lett., 125, 153901(2020). https://doi.org/10.1103/PhysRevLett.125.153901

    [43] T. E. Drake et al. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 14, 480-485(2020). https://doi.org/10.1038/s41566-020-0651-8

    [44] C. Bao et al. Quantum diffusion of microcavity solitons. Nat. Phys., 17, 462-466(2021). https://doi.org/10.1038/s41567-020-01152-5

    [45] Y. Li et al. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl., 9, 52(2020). https://doi.org/10.1038/s41377-020-0290-3

    [46] C. Bao, C. Yang. Stretched cavity soliton in dispersion-managed Kerr resonators. Phys. Rev. A, 92, 023802(2015). https://doi.org/10.1103/PhysRevA.92.023802

    [47] J. Taylor et al. Characterization of power-to-phase conversion in high-speed P-I-N photodiodes. IEEE Photo. J., 3, 140-151(2011). https://doi.org/10.1109/JPHOT.2011.2109703

    [48] D. Kwon et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep., 7, 40917(2017). https://doi.org/10.1038/srep40917

    [49] A. Kordts et al. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 41, 452-455(2016). https://doi.org/10.1364/OL.41.000452

    [50] M. H. Anderson et al. Dissipative solitons and switching waves in dispersion-modulated Kerr cavities. Phys. Rev. X, 13, 011040(2023). https://doi.org/10.1103/PhysRevX.13.011040

    [51] W. T. Wang et al. Polarization-diverse soliton transitions and deterministic switching dynamics in strongly-coupled and self-stabilized microresonator frequency combs. Comm. Phys., 7, 279(2024). https://doi.org/10.1038/s42005-024-01773-9

    [52] M. Karpov et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019). https://doi.org/10.1038/s41567-019-0635-0

    [53] C. Godey et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 063814(2014). https://doi.org/10.1103/PhysRevA.89.063814

    [54] F. Lei et al. Optical linewidth of soliton microcombs. Nat. Commun., 13, 3161(2022). https://doi.org/10.1038/s41467-022-30726-5

    [55] L. Hu et al. Theory of soliton self-frequency shift in silica optical microresonators with a modified Raman response by the Boson peak. Opt. Express, 32, 4062-4071(2024). https://doi.org/10.1364/OE.507726

    [56] A. B. Matsko, L. Maleki. On timing jitter of mode-locked Kerr frequency combs. Opt. Express, 21, 28862-28876(2013). https://doi.org/10.1364/OE.21.028862

    [57] R. Paschotta. Noise of mode-locked lasers (Part II): timing jitter and other fluctuations. Appl. Phys. B, 79, 163-173(2004). https://doi.org/10.1007/s00340-004-1548-9

    [58] X. Yi et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015). https://doi.org/10.1364/OPTICA.2.001078

    [59] W. Weng et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019). https://doi.org/10.1103/PhysRevLett.122.013902

    [60] S. H. Huang et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope. Sci. Rep., 7, 41988(2016). https://doi.org/10.1038/srep41988

    [61] G. Huang et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A, 99, 061801(2019). https://doi.org/10.1103/PhysRevA.99.061801

    [62] S. W. Huang et al. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression. Sci. Rep., 6, 26255(2016). https://doi.org/10.1038/srep26255

    [63] D. Owen. Good practice guide to phase noise measurement(2004).

    [64] E. Rubiola et al. Photonic-delay technique for phase-noise measurement of microwave oscillators. J. Opt. Soc. Am. B, 22, 987(2005). https://doi.org/10.1364/JOSAB.22.000987

    [65] D. Hou et al. Timing jitter characterization of mode-locked lasers with <1zs/Hz resolution using a simple optical heterodyne. Opt. Lett., 40, 2985-2988(2015). https://doi.org/10.1364/OL.40.002985

    [66] C. Kim et al. Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength. Opt. Express, 21, 26533-26541(2013). https://doi.org/10.1364/OE.21.026533

    [67] Y. Song, K. Jung, J. Kim. Impact of pulse dynamics on timing jitter in mode-locked fiber lasers. Opt. Lett., 36, 1761-1763(2011). https://doi.org/10.1364/OL.36.001761

    [68] B. Razavi. Jitter-power trade-offs in PLLs. IEEE Trans. Circuits Syst., 68, 1381-1387(2021). https://doi.org/10.1109/TCSI.2021.3057580

    [69] A. Morton, M. J. Morton. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing. J. Light. Technol., 36, 5048-5057(2018). https://doi.org/10.1109/JLT.2018.2817175

    [70] D. C. Heinecke, A. Bartels, S. A. Diddams. Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb. Opt. Express, 19, 18440-18451(2011). https://doi.org/10.1364/OE.19.018440

    [71] A. Klenner et al. Gigahertz frequency comb from a diode-pumped solid-state laser. Opt. Express, 22, 31008-31019(2014). https://doi.org/10.1364/OE.22.031008

    [72] J. Chen et al. High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. Opt. Lett., 32, 1566-1568(2007). https://doi.org/10.1364/OL.32.001566

    Wenting Wang, Wenzheng Liu, Hao Liu, Tristan Melton, Alwaleed Aldhafeeri, Dong-Il Lee, Jinghui Yang, Abhinav Kumar Vinod, Jinkang Lim, Yoon-Soo Jang, Heng Zhou, Mingbin Yu, Patrick Guo-Qiang Lo, Dim-Lee Kwong, Peter DeVore, Jason Chou, Ninghua Zhu, Chee Wei Wong, "Mapping ultrafast timing jitter in dispersion-managed 89 GHz frequency microcombs via self-heterodyne linear interferometry," Adv. Photon. Nexus 4, 036011 (2025)
    Download Citation