• Advanced Photonics Nexus
  • Vol. 4, Issue 2, 026011 (2025)
Zhitao Zhang1,†, Xiaobo Heng1, Junwu Wang1, Sheng Chen1..., Xiaojie Wang1, Chen Tong1, Zheng Li1 and Hongwen Xuan1,2,*|Show fewer author(s)
Author Affiliations
  • 1Chinese Academy of Sciences, GBA branch of Aerospace Information Research Institute, Guangzhou, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • show less
    DOI: 10.1117/1.APN.4.2.026011 Cite this Article Set citation alerts
    Zhitao Zhang, Xiaobo Heng, Junwu Wang, Sheng Chen, Xiaojie Wang, Chen Tong, Zheng Li, Hongwen Xuan, "Compact narrow-linewidth solid-state 193-nm pulsed laser source utilizing an optical parametric amplifier and its vortex beam generation," Adv. Photon. Nexus 4, 026011 (2025) Copy Citation Text show less
    References

    [1] M. Totzeck et al. Pushing deep ultraviolet lithography to its limits. Nat. Photonics, 1, 629-631(2007).

    [2] B. M. Barnes et al. Three-dimensional deep sub-wavelength defect detection using λ=193  nm optical microscopy. Opt. Express, 21, 26219-26226(2013). https://doi.org/10.1364/OE.21.026219

    [3] R. Kirner et al. Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm. Opt. Express, 26, 730-743(2018).

    [4] J. del Barrio, C. Sánchez-Somolinos. Light to shape the future: from photolithography to 4D printing. Adv. Opt. Mater., 7, 1900598(2019).

    [5] S. Tanaka et al. Development of high coherence high power 193 nm laser. Proc. SPIE, 9726, 972624(2016).

    [6] M. Scholz et al. A bright continuous-wave laser source at 193 nm. Appl. Phys. Lett., 103, 051114(2013).

    [7] H. Xuan et al. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers. Opt. Express, 23, 10564-10572(2015).

    [8] H. Zhang et al. 175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal. Appl. Phys. B, 93, 323-326(2008).

    [9] T. Kanai et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device. Opt. Express, 17, 8696-8703(2009).

    [10] H. Kawai et al. UV light source using fiber amplifier and nonlinear wavelength conversion, CTuT4(2003).

    [11] H. Xuan et al. 1 W solid-state 193 nm coherent light by sum-frequency generation. Opt. Express, 25, 29172-29179(2017).

    [12] Z. Zhao et al. Watt-level 193 nm source generation based on compact collinear cascaded sum frequency mixing configuration. Opt. Express, 26, 19435-19444(2018).

    [13] Y. Orii et al. Stable 10,000-hour operation of 20-W deep ultraviolet laser generation at 266 nm. Opt. Express, 30, 11797-11808(2022).

    [14] H. Yu, Z. Zhang, H. Xuan. High-conversion-efficiency high-power deep-ultraviolet 266 nm laser based on domestic commercially available CLBO crystal. Chinese J. Lasers, 51, 0701020(2024).

    [15] T. Kojima et al. 20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser. Opt. Lett., 25, 58-60(2000).

    [16] Y. Jaouën et al. Power limitation induced by nonlinear effects in pulsed high-power fiber amplifiers. C. R. Phys., 7, 163-169(2006).

    [17] L. V. Kotov et al. Record-peak-power all-fiber single-frequency 1550 nm laser. Laser Phys. Lett., 11, 095102(2014).

    [18] P. Belden, D. Chen, F. D. Teodoro. Watt-level, gigahertz-linewidth difference-frequency generation in PPLN pumped by a nanosecond-pulse fiber laser source. Opt. Lett., 40, 958-961(2015).

    [19] R. T. Murray et al. High average power parametric wavelength conversion at 3.313.48  μm in MgO: PPLN. Opt. Express, 25, 6421-6430(2017). https://doi.org/10.1364/OE.25.006421

    [20] Z. Zhang et al. High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals. Adv. Photonics Nexus, 3, 026012(2024).

    [21] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [22] Z. Y. Zhou et al. Optical vortex beam based optical fan for high-precision optical measurements and optical switching. Opt. Lett., 39, 5098-5101(2014).

    [23] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [24] B. Wang et al. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express, 29, 3342-3358(2021).

    [25] F. Takahashi et al. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle. Sci. Rep., 6, 21738(2016).

    [26] J. Ni et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light-Sci. Appl., 6, e17011(2017).

    [27] F. Steinlechner et al. Frequency conversion of structured light. Sci. Rep., 6, 21390(2016).

    [28] G. Gui et al. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat. Photonics, 15, 608-613(2021).

    [29] Y. Li et al. Sum frequency generation with two orbital angular momentum carrying laser beams. J. Opt. Soc. Amer. B, 32, 407-411(2015).

    [30] H. Mei et al. Amplification of light pulses with orbital angular momentum (OAM) in nitrogen ions lasing. Opt. Express, 31, 31912-31921(2023).

    [31] C. Zheng et al. Direct amplification of femtosecond optical vortices in a single-crystal fiber. Photonics Res., 12, 27-32(2023).

    Zhitao Zhang, Xiaobo Heng, Junwu Wang, Sheng Chen, Xiaojie Wang, Chen Tong, Zheng Li, Hongwen Xuan, "Compact narrow-linewidth solid-state 193-nm pulsed laser source utilizing an optical parametric amplifier and its vortex beam generation," Adv. Photon. Nexus 4, 026011 (2025)
    Download Citation