[1] WANG Dehui, SHI Caijun, WU Linmei. Bull Chin Ceram Soc, 2016, 35(1): 141-149.
[3] KHAN M, LAO J C, DAI J G. Comparative study of advanced computational techniques for estimating the compressive strength of UHPC[J]. J Asian Concr Fed, 2022, 8(1): 51-68.
[4] MILLARD S G, MOLYNEAUX T C K, BARNETT S J, et al. Dynamic enhancement of blast-resistant ultra high performance fibre-reinforced concrete under flexural and shear loading[J]. Int J Impact Eng, 2010, 37(4): 405-413.
[5] Lü Yingqing, CHEN Nanxun, WU Haijun, et al. Acta Armament, 2022, 43(1): 37-47.
[6] BARNETT S J, LATASTE J F, PARRY T, et al. Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength[J]. Mater Struct, 2010, 43(7): 1009-1023.
[7] HUANG H H, GAO X J, LI L S, et al. Improvement effect of steel fiber orientation control on mechanical performance of UHPC[J]. Constr Build Mater, 2018, 188: 709-721.
[8] KANG S T, KIM J K. The relation between fiber orientation and tensile behavior in an Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC)[J]. Cem Concr Res, 2011, 41(10): 1001-1014.
[9] MU Ru, WU Hangpeng, QING Longbang. Concrete, 2021, 8: 11-13.
[10] HUANG H L, PENG C H, LUO J, et al. Micromechanical properties of interfacial transition zone between carbon fibers and UHPC matrix based on nano-scratching tests[J]. Cem Concr Compos, 2023, 139: 105014.
[11] BITENCOURT L A G, MANZOLI O L, BITTENCOURT T N, et al. Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers[J]. Int J Solids Struct, 2019, 159: 171-190.
[12] BOLANDER J E, CHOI S, DUDDUKURI S R. Fracture of fiber-reinforced cement composites: effects of fiber dispersion[J]. Int J Fract, 2008, 154(1): 73-86.
[13] CUNHA V M C F, BARROS J A O, SENA-CRUZ J M. An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete[J]. Cem Concr Res, 2011, 41(1): 64-76.
[14] YU R C, CIFUENTES H, RIVERO I, et al. Dynamic fracture behaviour in fibre-reinforced cementitious composites[J]. J Mech Phys Solids, 2016, 93: 135-152.
[15] QING Lognbang, YANG Zimei, MU Ru, et al. J Build Mater, 2023, 26(2): 111-121.
[16] MU R, LI H, QING L B, et al. Aligning steel fibers in cement mortar using electro-magnetic field[J]. Constr Build Mater, 2017, 131: 309-316.
[17] ZHANG H, HUANG Y J, LIN M, et al. Effects of fibre orientation on tensile properties of ultra high performance fibre reinforced concrete based on meso-scale Monte Carlo simulations[J]. Compos Struct, 2022, 287: 115331.
[18] ZHANG H, HUANG Y J, XU S L, et al. 3D cohesive fracture of heterogeneous CA-UHPC: a mesoscale investigation[J]. Int J Mech Sci, 2023, 249: 108270.
[19] YANG Z J, HUANG Y J, YAO F, et al. Eng Mech, 2020, 37(8): 158-166.
[20] LIU Bo, YIN Desheng, CHEN Bofu, et al. Water Resour Power, 2015, 33(5): 101-104.
[21] ZHANG H, HUANG Y J, YANG Z J, et al. A discrete-continuum coupled finite element modelling approach for fibre reinforced concrete[J]. Cem Concr Res, 2018, 106: 130-143.
[22] LEE Y, KANG S T, KIM J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix[J]. Constr Build Mater, 2010, 24(10): 2030-2041.
[23] LI V C, WANG Y, BACKER S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix[J]. Composites, 1990, 21(2): 132-140.
[24] WU Chang, WANG Xinru, XU Mingwen, et al. Acta Mater Compos Sin, 2022, 39(11): 5216-5227.
[25] STROEVEN P, HU J. Effectiveness near boundaries of fibre reinforcement in concrete[J]. Mater Struct, 2006, 39(10): 1001-1013.
[26] ZHANG H, YU R N. Inclined fiber pullout from a cementitious matrix: a numerical study[J]. Materials, 2016, 9(10): 800.
[27] QU S Q, ZHANG Y, ZHU Y P, et al. Prediction of tensile response of UHPC with aligned and ZnPh treated steel fibers based on a spatial stochastic process[J]. Cem Concr Res, 2020, 136: 106165.