• Chinese Journal of Lasers
  • Vol. 47, Issue 9, 912002 (2020)
He Yefeng1, Li Chunyu2、*, Guo Jiarui1, and Zhao Yankun2
Author Affiliations
  • 1School of Cyberspace Security, Xi''an University of Posts and Telecommunications, Xi''an, Shaanxi 710121, China
  • 2School of Communication and Information Engineering, Xi''an University of Posts and Telecommunications, Xi''an, Shaanxi 710121, China
  • show less
    DOI: 10.3788/CJL202047.0912002 Cite this Article Set citation alerts
    He Yefeng, Li Chunyu, Guo Jiarui, Zhao Yankun. Passive Measurement-Device-Independent Quantum Key Distribution Based on Heralded Pair Coherent States[J]. Chinese Journal of Lasers, 2020, 47(9): 912002 Copy Citation Text show less
    References

    [1] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 85, 441-444(2000).

    [2] Mayers D. Unconditional security in quantum cryptography[J]. Journal of the ACM (JACM), 48, 351-406(2001).

    [3] Gottesman D, Lo H K, Lutkenhaus N et al. Security of quantum key distribution with imperfect devices. [C]∥International Symposium on Information Theory, June 27- July 2, 2004, Chicago, IL, USA. New York: IEEE, 8178599(2004).

    [4] Sun S H, Gao M, Li C Y et al. Practical decoy-state measurement-device-independent quantum key distribution[J]. Physical Review A, 87, 052329(2013).

    [5] Dong C, Zhao S H, Zhao W H et al. Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency[J]. Acta Physica Sinica, 63, 030302(2014).

    [6] Du Y N, Xie W Z, Jin X et al. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states[J]. Acta Physica Sinica, 64, 110301(2015).

    [7] Zhu Z D, Zhang X, Zhao S H et al. Measurement-device-independent quantum key distribution protocols for heralded pair coherent state[J]. Laser & Optoelectronics Progress, 54, 122703(2017).

    [8] Dong C, Zhao S H, Shi L. Measurement device-independent quantum key distribution with heralded pair coherent state[J]. Quantum Information Processing, 15, 4253-4263(2016).

    [9] Mao Q P, Wang L, Ma Y Y et al. Measurement-device-independent quantum key distribution with pulse-position modulation[J]. Acta Photonica Sinica, 47, 0306007(2018).

    [10] He Y F, Wang D, Yang H J et al. Quantum key distribution based on heralded single photon sources and quantum memory[J]. Chinese Journal of Lasers, 46, 0412001(2019).

    [11] Zhu Q L, Shi L, Wei J H et al. Background light suppression in free space quantum key distribution[J]. Laser & Optoelectronics Progress, 55, 060004(2018).

    [12] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).

    [13] Chi H H, Yu Z W, Wang X B. Decoy-state method of quantum key distribution with both source errors and statistics fluctuations[J]. Physical Review A, 86, 042307(2012).

    [14] Mi J L, Wang F Q, Lin Q Q et al. Decoy state quantum key distribution with dual detectors heralded single photon source[J]. Acta Physica Sinica, 57, 678-684(2008).

    [15] Zhang Y, Chen W, Wang S et al. Practical non-Poissonian light source for passive decoy state quantum key distribution[J]. Optics Letters, 35, 3393-3395(2010).

    [16] Mauerer W, Silberhorn C. Quantum key distribution with passive decoy state selection[J]. Physical Review A, 75, 050305(2007).

    [17] He Y F, Yang H J, Wang D et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum[J]. Acta Optica Sinica, 39, 0427001(2019).

    [18] Zhu Z D, Zhao S H, Gu W Y et al. Orbital-angular-momentum-encoded measurement-device-independent quantum key distributions under atmospheric turbulence[J]. Acta Optica Sinica, 38, 1227002(2018).

    [19] Tang Z L, Li M, Wei Z J et al. The quantum key distribution system based on polarization states produced by phase modulation[J]. Acta Physica Sinica, 54, 2534-2539(2005).

    [20] Piccirillo B, Dambrosio V, Slussarenko S et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate[J]. Applied Physics Letters, 97, 241104(2010).

    [21] Dong C, Zhao S H, Dong Y et al. Measurement of device-independent quantum key distribution for the rotation invariant photonic state[J]. Acta Physica Sinica, 63, 170303(2014).

    [22] Wang X, Wang Y, Chen R K et al. Measurement-device-independent quantum key distribution with heralded pair coherent state[J]. Laser Physics, 26, 065203(2016).

    [23] Zhu F, Zhang C H, Liu A P et al. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J]. Physics Letters A, 380, 1408-1413(2016).

    [24] Li Y Q, Zhu Y, Wang J P[M]. Principle and technology of optical communication, 309-312(2006).

    [25] Zhang T. Study on high efficient and long-distance measurement device independent quantum key distribution[D]. Nanjing: Nanjing University of Posts and Telecommunications(2016).

    [26] Zhang Y Q, Djordjevic I B. Generalized PPM-based BB84 QKD protocol. [C]∥2014 16th International Conference on Transparent Optical Networks (ICTON), July 6-10,2014, Graz, Austria. New York: IEEE, 1-4(2014).

    [27] Wang L, Zhou Y Y, Zhou X J et al. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation[J]. Optoelectronics Letters, 14, 138-142(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1809170000479FbIeK

    [28] Zhang S L, Zou X B, Li C F et al. A universal coherent source for quantum key distribution[J]. Chinese Science Bulletin, 54, 1863-1871(2009).

    [29] Agarwal G S. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission[J]. Physical Review Letters, 57, 827-830(1986).

    [30] Dong C, Zhao S H, Sun Y. Measurement-device-independent quantum key distribution with q-plate[J]. Quantum Information Processing, 14, 4575-4584(2015).

    [31] Slussarenko S, Murauski A, Du T et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 19, 4085-4090(2011).

    [32] Shan Y Z, Sun S H, Ma X C et al. Measurement-device-independent quantum key distribution with a passive decoy-state method[J]. Physical Review A, 90, 042334(2014).

    He Yefeng, Li Chunyu, Guo Jiarui, Zhao Yankun. Passive Measurement-Device-Independent Quantum Key Distribution Based on Heralded Pair Coherent States[J]. Chinese Journal of Lasers, 2020, 47(9): 912002
    Download Citation