• Chinese Journal of Lasers
  • Vol. 43, Issue 6, 609003 (2016)
Yuan Caojin*, Feng Shaotong, and Nie Shouping
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201643.0609003 Cite this Article Set citation alerts
    Yuan Caojin, Feng Shaotong, Nie Shouping. Digital Holographic Microscopy by Using Structured Illumination[J]. Chinese Journal of Lasers, 2016, 43(6): 609003 Copy Citation Text show less
    References

    [1] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 1994, 33(2): 179-181.

    [2] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.

    [3] Carl D, Kemper B, Wernicke G, et al.. Parameter-optimized digital holographic microscope for high-resolution living-cell analysis[J]. Applied Optics, 2004, 43(33): 6536-6544.

    [4] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.

    [5] Kim M K. Applications of digital holography in biomedical microscopy[J]. Journal of the Optical Society of Korea, 2010, 14(2): 77-89.

    [6] Wang Yunxin, Wang Dayong, Yang Yishu, et al.. Application and analysis in the biomedicine field using digital holographic technology [J]. Chinese J Lasers, 2014, 41(2): 0209002.

    [7] Miccio L, Memmolo P, Merola F, et al.. Particle tracking by full-field complex wavefront subtraction in digital holography microscopy [J]. Lab on a Chip, 2014, 14(6): 1129-1134.

    [8] Rinehart M T, Park H S, Wax A. Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography[J]. Biomedical Optics Express, 2015, 6(6): 2067-2075.

    [9] Warnasooriya N, Joud F, Bun P, et al.. Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy[J]. Optics Express, 2010, 18(4): 3264-3273.

    [10] Abrantes J K, Stanislas M, Coudert S, et al.. Digital microscopic holography for micrometer particles in air[J]. Applied Optics, 2013, 52(1): A397-A409.

    [11] Goto K, Hayasaki Y. Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation[J]. Optics Letters, 2015, 40(14): 3344-3347.

    [12] Yuan C J, Pedrini G, Fu G D, et al.. Digital holographic microscopy for dynamic imaging of hydrogels[C]. SPIE, 2011, 8082: 80822F.

    [13] Molaei M, Sheng J. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm [J]. Optics Express, 2014, 22(26): 32119-32137.

    [14] Deng Lijun, Yang Yong, Shi Bingchuan, et al.. Refractive index distribution and surface profile measurement of micro-optics based on dual wavelength digital holography[J]. Acta Optica Sinica, 2014, 34(3): 0312006.

    [15] Faridian A, Hopp D, Pedrini G, et al.. Nanoscale imaging using deep ultraviolet digital holographic microscopy[J]. Optics Express, 2010, 18(13): 14159-14164.

    [16] Sheng J, Malkiel E, Katz J. Digital holographic microscope for measuring three-dimensional particle distributions and motions[J]. Applied Optics, 2006, 45(16): 3893-3901.

    [17] Massig J H. Digital off-axis holography with a synthetic aperture[J]. Optics Letters, 2002, 27(24): 2179-2181.

    [18] Clerc F L, Gross M, Collot L. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography[J]. Optics Letters, 2001, 26(20): 1550-1552.

    [19] Liu C, Liu Z G, Bo F, et al.. Super-resolution digital holographic imaging method[J]. Applied Physics Letters, 2002, 81(17): 3143-3145.

    [20] Granero L, Mico V, Zalevsky Z, et al.. Superresolution imaging method using phase-shifting digital lensless Fourier holography[J]. Optics Express, 2009, 17(17): 15008-15022.

    [21] Mico V, Zalevsky Z, Garcia-Martinez P, et al.. Superresolved imaging in digital holography by superposition of tilted wavefronts[J]. Applied Optics, 2006, 45(5): 822-828.

    [22] Mico V, Zalevsky Z, Garcia-Martinez P, et al.. Synthetic aperture superresolution with multiple off-axis holograms[J]. Journal of the Optical Society of America A, 2006, 23(12): 3162-3170.

    [23] Mico V, Zalevsky Z, Garica J. Synthetic aperture microscopy using off-axis illumination and polarization coding[J]. Optics Communications, 2007, 276(2): 209-217.

    [24] Yuan C J, Zhai H C, Liu H T. Angular multiplexing in pulsed digital holography for aperture synthesis[J]. Optics Letters, 2008, 33(20): 2356-2358.

    [25] Yuan C J, Situ G H, Pedrini G, et al.. Resolution improvement in digital holography by angular and polarization multiplexing[J]. Applied Optics, 2011, 50(7): B6-B11.

    [26] Wang J, Zhao J L, Qin C, et al.. Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion[J]. Optics Letters, 2012, 37(7): 1211-1213.

    [27] Zhao J L, Yan X B, Sun W W, et al.. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states[J]. Optics Letters, 2010, 35(20): 3519-3521.

    [28] Shroff S A, Fienup J R, Williams D R. Lateral superresolution using a posteriori phase shift estimation for a moving object: Experimental results[J]. Journal of the Optical Society of America A, 2010, 27(8): 1770-1782.

    [29] Ma J, Yuan C J, Situ G H, et al.. Resolution enhancement in digital holographic microscopy with structured illumination[J]. Chinese Optics Letters, 2013, 11(9): 090901.

    [30] Dubois F, Grosfils P. Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution[J]. Optics Letters, 2008, 33(22): 2605-2607.

    [31] Verpillat F, Joud F, Desbiolles P, et al.. Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles[J]. Optics Express, 2011, 19(27): 26044-26055.

    [32] Faridian A, Pedrini G, Osten W. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing[J]. Journal of Biomedical Optics, 2013, 18(8): 086009.

    [33] Faridian A, Pedrini G, Osten W. Opposed-view dark-field digital holographic microscopy[J]. Biomedical Optics Express, 2014, 5(3): 728-736.

    [34] Allen L, Beijersbergen M W, Spreeuw R J C, et al.. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [35] Allen L, Babiker M, Lai W K, et al.. Atom dynamics in multiple Laguerre-Gaussian beams[J]. Physical Review A, 1996, 54(5): 4259-4270.

    [36] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al.. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327.

    [37] Zhao Yingchun, Zhang Xiuying, Yuan Caojin, et al.. Dark-field digital holographic microscopy by using vortex beam illumination[J]. Acta Physica Sinica, 2014, 63(22): 224202.

    [38] Born M, Wolf E. Principles of optics[M]. Cambridge: Cambridge University Press, 1999.

    [39] Wu Yiquan, Yin Jun, Zhu Li, et al.. Method for improving reconstructed image quality of digital hologram based on SRAD and NSCT[J]. Chinese J Lasers, 2014, 41(2): 0209024.

    [40] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 2013, 38(8): 1328-1330.

    [41] Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination[J]. Optics Letters, 2013, 38(24): 5204-5207.

    [42] Jiang Z L, Veetil S P, Cheng J, et al.. High-resolution digital holography with the aid of coherent diffraction imaging[J]. Optics Express, 2015, 23(16): 20916-20925.

    [43] Porras M A, Borghi R, Santarsiero M. Relationship between elegant Laguerre-Gauss and Bessel-Gauss beams[J]. Journal of the Optical Society of America A, 2001, 18(1): 177-184.

    [44] Li N, Jiang Y F, Huang K K, et al.. Abruptly autofocusing property of blocked circular Airy beams[J]. Optics Express, 2014, 22(19): 22847-22853.

    [45] Li P, Liu S, Peng T, et al.. Spiral autofocusing Airy beams carrying power-exponent-phase vortices[J]. Optics Express, 2014, 22(7): 7598-7606.

    [46] Jiang Y F, Huang K K, Lu X H. Propagation dynamics of abruptly autofocusing Airy beams with optical vortices[J]. Optics Express, 2012, 20(17): 18579-18584.

    [47] Chen B, Chen C D, Peng X, et al.. Propagation of sharply autofocused ring Airy Gaussian vortex beams[J]. Optics Express, 2015, 23(15): 19288-19298.

    [48] Reddy S G, Permangatt C, Prabhakar S, et al.. Divergence of optical vortex beams[J]. Applied Optics, 2015, 54(22): 6690-6693.

    [49] Goodman J W. Introduction to Fourier optics[M]. Colorado: Roberts & Company, 2005.

    [50] Situ G H, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancement[J]. Journal of the Optical Society of America A, 2009, 26(8): 1788-1797.

    Yuan Caojin, Feng Shaotong, Nie Shouping. Digital Holographic Microscopy by Using Structured Illumination[J]. Chinese Journal of Lasers, 2016, 43(6): 609003
    Download Citation