• Photonics Research
  • Vol. 7, Issue 7, A36 (2019)
F. Mondain1, T. Lunghi1, A. Zavatta2、3, E. Gouzien1, F. Doutre1, M. De Micheli1, S. Tanzilli1, and V. D’Auria1、*
Author Affiliations
  • 1Université Côte d’Azur, CNRS, Institut de Physique de Nice, Parc Valrose, 06108 Nice Cedex 2, France
  • 2Istituto Nazionale di Ottica (INO-CNR) Largo Enrico Fermi 6, 50125 Firenze, Italy
  • 3LENS and Department of Physics, Universitá di Firenze, 50019 Sesto Fiorentino, Firenze, Italy
  • show less
    DOI: 10.1364/PRJ.7.000A36 Cite this Article Set citation alerts
    F. Mondain, T. Lunghi, A. Zavatta, E. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, V. D’Auria. Chip-based squeezing at a telecom wavelength[J]. Photonics Research, 2019, 7(7): A36 Copy Citation Text show less
    References

    [1] D. Andrews, A. I. Lvovsky. Squeezed Light, Photonics Volume 1: Fundamentals of Photonics and Physics, 121-163(2015).

    [2] U. L. Andersen, G. Leuchs, C. Silberhorn. Continuous-variable quantum information processing. Laser Photon. Rev., 4, 337-354(2010).

    [3] N. C. Menicucci, S. T. Flammia, H. Zaidi, O. Pfister. Ultracompact generation of continuous-variable cluster states. Phys. Rev. A, 76, 010302(2007).

    [4] T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, R. F. Werner. Gaussian entanglement for quantum key distribution from a single-mode squeezing source. New J. Phys., 15, 053049(2013).

    [5] C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84, 621-669(2012).

    [6] M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, K. Peng. Deterministic quantum teleportation through fiber channels. Sci. Adv., 4, eaas9401(2018).

    [7] R. Schnabel. Squeezed states of light and their applications in laser interferometers. Phys. Rep., 684, 1-51(2017).

    [8] U. L. Andersen, T. Gehring, C. Marquardt, G. Leuchs. 30 years of squeezed light generation. Phys. Scr., 91, 053001(2016).

    [9] A. I. Lvovsky, M. G. Raymer. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys., 81, 299-332(2009).

    [10] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier. Generating optical Schrödinger kittens for quantum information processing. Science, 312, 83-86(2006).

    [11] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, A. I. Lvovsky. Enlargement of optical Schrödinger’s cat states. Nat. Photonics, 11, 379-382(2017).

    [12] A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, A. I. Lvovsky. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett., 118, 160501(2017).

    [13] O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, J. Laurat. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 8, 570-574(2014).

    [14] M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, R. Schnabel. Squeezed light at 1550  nm with a quantum noise reduction of 12.3  dB. Opt. Express, 19, 25763-25772(2011).

    [15] J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, N. Treps. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photonics, 8, 109-112(2013).

    [16] G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, A. Furusawa. Continuous-variable entanglement on a chip. Nat. Photonics, 9, 316-319(2015).

    [17] K. Yoshino, T. Aoki, A. Furusawa. Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett., 90, 041111(2007).

    [18] Y. Eto, T. Tajima, Y. Zhang, T. Hirano. Observation of quadrature squeezing in a χ(2) nonlinear waveguide using a temporally shaped local oscillator pulse. Opt. Express, 16, 10650-10657(2008).

    [19] A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, M. Lipson. On-chip optical squeezing. Phys. Rev. Appl., 3, 044005(2015).

    [20] M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, C. Silberhorn. Waveguide cavity resonator as a source of optical squeezing. Phys. Rev. Appl., 7, 044026(2017).

    [21] C. Porto, D. Rusca, S. Cialdi, A. Crespi, R. Osellame, D. Tamascelli, S. Olivares, M. G. A. Paris. Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup. J. Opt. Soc. Am. B, 35, 1596-1602(2018).

    [22] F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, J. C. F. Matthews. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol., 3, 025003(2018).

    [23] F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, M. Lobino. Integrated photonic platform for quantum information with continuous variables. Sci. Adv., 4, eaat9331(2018).

    [24] O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, S. Tanzilli. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 18, 104001(2016).

    [25] F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, K. C. Peng. Experimental generation of optical non-classical states of light with 1.34  μm wavelength. Eur. Phys. J. D, 62, 433-437(2011).

    [26] F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, S. Tanzilli. A fully guided-wave squeezing experiment for fiber quantum networks. Optica, 3, 362-365(2016).

    [27] T. Umeki, O. Tadanaga, M. Asobe. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide. IEEE J. Quantum Electron., 46, 1206-1213(2010).

    [28] D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, P. Baldi. Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices. J. Lightwave Technol., 25, 1588-1593(2007).

    [29] L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, D. J. Bamford. Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions. App. Phys. Lett., 76, 1089-1091(2000).

    [30] A. M. Glass, D. von der Linde, D. H. Auston, T. J. Negran. Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media. J. Electron. Mater., 4, 915-943(1975).

    [31] A. Hellwig. Nonlinear optical and photorefractive properties of periodically poled channel waveguides in lithium niobate(2011).

    [32] L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, S. Tanzilli. Ultra-fast heralded single photon source based on telecom technology. Laser Photon. Rev., 9, L1-L5(2015).

    [33] M. Pysher, R. Bloomer, C. M. Kaleva, T. D. Roberts, P. Battle, O. Pfister. Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide. Opt. Lett., 34, 256-258(2009).

    [34] D. Barral, M. G. Thompson, J. Linares. Detection of two-mode spatial quantum states of light by electro-optic integrated directional couplers. J. Opt. Soc. Am. B, 32, 1165-1173(2015).

    [35] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5  mol.% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B, 14, 3319-3322(1997).

    [36] J. Appel, D. Hoffman, E. Figueroa, A. I. Lvovsky. Electronic noise in optical homodyne tomography. Phys. Rev. A, 75, 035802(2007).

    CLP Journals

    [1] Xian-Min Jin, M. S. Kim, Brian J. Smith. Quantum photonics: feature introduction[J]. Photonics Research, 2019, 7(12): QP1

    F. Mondain, T. Lunghi, A. Zavatta, E. Gouzien, F. Doutre, M. De Micheli, S. Tanzilli, V. D’Auria. Chip-based squeezing at a telecom wavelength[J]. Photonics Research, 2019, 7(7): A36
    Download Citation