[1] BERNARDO G, ARAúJO T, LOPES T D S, et al. Recent advances in membrane technologies for hydrogen purification[J]. Int J Hydrogen Energy, 2020, 45(12): 7313-7338.
[2] DEIBERT W, IVANOVA M E, BAUMANN S, et al. Ion-conducting ceramic membrane reactors for high-temperature applications[J]. J Membr Sci, 2017, 543: 79-97.
[3] SONG J, KANG J, TAN X, et al. Proton conducting perovskite hollow fibre membranes with surface catalytic modification for enhanced hydrogen separation[J]. J Eur Ceram Soc, 2016, 36(7): 1669-1677.
[7] ZHANG Y, CHEN B, GUAN D, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.
[8] WANG H, WANG X, MENG B, et al. Perovskite-based mixed protonic-electronic conducting membranes for hydrogen separation: recent status and advances[J]. J Ind Eng Chem, 2018, 60: 297-306.
[9] HASHIM S S, SOMALU M R, LOH K S, et al. Perovskite-based proton conducting membranes for hydrogen separation: A review[J]. Int J Hydrogen Energy, 2018, 43(32): 15281-15305.
[10] CHEN L, LIU L, XUE J, et al. Tailoring hydrogen separation performance through the ceramic lanthanum tungstate membranes by chlorine doping[J]. J Membr Sci, 2019, 573: 117-125.
[11] CHEN L, ZHUANG L, XUE J, et al. Tuning the separation performance of hydrogen permeable membranes using an anion doping strategy[J]. J Mater Chem A, 2017, 5(38): 20482-20490.
[12] SU F, XIA C, PENG R. Novel fluoride-doped barium cerate applied as stable electrolyte in proton conducting solid oxide fuel cells[J]. J Eur Ceram Soc, 2015, 35(13): 3553-3558.
[13] ZHOU H, DAI L, JIA L, et al. Effect of fluorine, chlorine and bromine doping on the properties of gadolinium doped barium cerate electrolytes[J]. Int J Hydrogen Energy, 2015, 40(29): 8980-8988.
[14] ZHU J, LIU G, LIU Z, et al. Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation[J]. Adv Mater, 2016, 28(18): 3511-3515.
[15] MENG B, WANG H, CHENG H, et al. Hydrogen permeation performance of dual-phase protonic-electronic conducting ceramic membrane with regular and independent transport channels[J]. Sep Purif Technol, 2019, 213: 515-523.
[17] BI X, MENG X, LIU P, et al. A novel CO2-resistant ceramic dual-phase hollow fiber membrane for oxygen separation[J]. J Membr Sci, 2017, 522: 91-99.
[18] FONTAINE M, DENONVILLE C, LI Z, et al. Fabrication and H2 flux measurement of asymmetric La27W3.5Mo1.5O55.5-δ-La0.87Sr0.13CrO3-δ membranes[J]. J Eur Ceram Soc, 2018, 38(4): 1695-1701.
[19] MERCADELLI E, GONDOLINI A, MONTALEONE D, et al. Production strategies of asymmetric BaCe0.65Zr0.20Y0.15O3-δ- Ce0.8Gd0.2O2-δ membrane for hydrogen separation[J]. Int J Hydrogen Energy, 2020, 45(12): 7468-7478.
[21] LIU H, CHEN Y, WEI Y, et al. CO2-tolerant U-shaped hollow fiber membranes for hydrogen separation[J]. Int J Hydrogen Energy, 2017, 42(7): 4208-4215.
[22] SADYKOV V A, EREMEEV N F, FEDOROVA Y E, et al. Design and performance of asymmetric supported membranes for oxygen and hydrogen separation[J]. Int J Hydrogen Energy, 2021, 46(38): 20222-20239.
[25] WU Z, WANG B, LI K. A novel dual-layer ceramic hollow fibre membrane reactor for methane conversion[J]. J Membr Sci, 2010, 352: 63-70.
[26] SHANG Y, WEI L, MENG X, et al. CO2-enhanced hydrogen permeability of dual-layered A-site deficient Ba0.95Ce0.85Tb0.05Zr0.1O3-δ- based hollow fiber membrane[J]. J Membr Sci, 2018, 546: 82-89.
[27] CHENG H, WANG X, MENG X, et al. Dual-layer BaCe0.8Y0.2O3-δ- Ce0.8Y0.2O2-δ/BaCe0.8Y0.2O3-δ-Ni hollow fiber membranes for H2 separation[J]. J Membr Sci, 2020, 601:117801.
[28] CHENG H, MENG B, LI C, et al. Single-step synthesized dual-layer hollow fiber membrane reactor for on-site hydrogen production through ammonia decomposition[J]. Int J Hydrogen Energy, 2020, 45(12): 7423-7432.
[29] LIU Y, DAI L, ZHANG W, et al. Preparation of dual-phase composite BaCe0.8Y0.2O3/Ce0.8Y0.2O2 and its application for hydrogen permeation [J]. Ceram Int, 2016, 42(5): 6391-6398.
[30] ROSENSTEEL W A, RICOTE S, SULLIVAN N P. Hydrogen permeation through dense BaCe0.8Y0.2O3-δ-Ce0.8Y0.2O2-δ composite- ceramic hydrogen separation membranes[J]. Int J Hydrogen Energy, 2016, 41(4): 2598-2606.
[31] QI X W, LIN Y S. Electrical conduction and hydrogen permeation through mixed proton-electron conducting strontium cerate membranes[J]. Solid State Ionics, 2000, 130: 149-156.