• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 2, 661 (2024)
ZHENG Jiahong* and ZHOU Yan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    ZHENG Jiahong, ZHOU Yan. Preparation and Application of Carbon Quantum Dots@Gold Nanoclusters Ratio Fluorescence Sensor[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 661 Copy Citation Text show less
    References

    [1] HECKERT E G, KARAKOTI A S, SEAL S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria[J]. Biomaterials, 2008, 29(18): 2705-2709.

    [2] JEONG J, RAO B A, SON Y A. Dual sensing performance of a rhodamine-derived scaffold for the determination of Cu2+ and Ce4+ in aqueous media[J]. Sens Actuat B Chem, 2015, 220: 1254-1265.

    [3] MOGHADAM M R, DADFARNIA S, SHABANI A M H, et al. Chemometric-assisted kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine[J]. Anal Biochem, 2011, 410(2): 289-295.

    [4] ZHU X H, ZHAO T B, NIE Z, et al. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis[J]. Anal Chem, 2015, 87(16): 8524-8530.

    [5] AHVENAINEN R. New approaches in improving the shelf life of minimally processed fruit and vegetables[J]. Trends Food Sci Technol, 1996, 7(6): 179-187.

    [6] LUO X L, ZHANG W G, HAN Y, et al. N, S co-doped carbon dots based fluorescent “on-off-on” sensor for determination of ascorbic acid in common fruits[J]. Food Chem, 2018, 258: 214-221.

    [7] NEUBERGER S, JOO? K, FLOTTMANN D, et al. Raman spectroscopy and capillary zone electrophoresis for the analysis of degradation processes in commercial effervescent tablets containing acetylsalicylic acid and ascorbic acid[J]. J Pharm Biomed Anal, 2017, 134: 122-129.

    [8] TAI A, GOHDA E. Determination of ascorbic acid and its related compounds in foods and beverages by hydrophilic interaction liquid chromatography[J]. J Chromatogr B, 2007, 853(1/2): 214-220.

    [9] WANG Z H, TENG X, LU C. Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid[J]. Analyst, 2012, 137(8): 1876-1881.

    [10] WU F, HUANG T, HU Y J, et al. Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups[J]. Microchim Acta, 2016, 183(9): 2539-2546.

    [11] DUAN N, WU S J, DAI S L, et al. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles[J]. Microchim Acta, 2015, 182(5): 917-923.

    [12] LI Y X, HUANG H, MA Y H, et al. Highly sensitive fluorescent detection of dihydroxybenzene based on graphene quantum dots[J]. Sens Actuat B Chem, 2014, 205: 227-233.

    [13] NAM H, KWON J E, CHOI M W, et al. Highly sensitive and selective fluorescent probe for ascorbic acid with a broad detection range through dual-quenching and bimodal action of nitronyl-nitroxide[J]. ACS Sens, 2016, 1(4): 392-398.

    [14] LIN Z Z, LI M J, LV S Z, et al. In situ synthesis of fluorescent polydopamine nanoparticles coupled with enzyme-controlled dissolution of MnO2 nanoflakes for a sensitive immunoassay of cancer biomarkers[J]. J Mater Chem B, 2017, 5(43): 8506-8513.

    [15] FAN D Q, SHANG C S, GU W L, et al. Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection[J]. ACS Appl Mater Interfaces, 2017, 9(31): 25870-25877.

    [16] LONG Dengying. Determination of tetracycline antibiotics and ascorbic acid based on fluorescent carbon dot. Chongqing: Southwest University, 2020.

    [17] LIU Huadong, XU Haoxuan, LI Hewei, et al. J Zhengzhou Univ Eng Sci, 2022, 43(6): 64-69.

    [18] YANG Y Z, XIAO N, CEN Y Y, et al. Dual-emission ratiometric nanoprobe for visual detection of Cu(II) and intracellular fluorescence imaging[J]. Spectrochimica Acta A Mol Biomol Spectrosc, 2019, 223: 117300.

    [19] JIN S, LIU W, HU D Q, et al. Aggregation-induced emission (AIE) in Ag-Au bimetallic nanocluster[J]. Chem A Eur J, 2018, 24(15): 3712-3715.

    [20] LEI X, LI H C, SUN X Y, et al. Mod Chem Ind, 2021, 41(7): 234-238.

    [21] HUANG Yanjie, LIAN Chao, ZHOU Jinyan, et al. Acta Phys Chim Sin, 2019, 35(11): 1267-1275.

    [22] FAN Xiaohui. Preparation and properties of pH-responsive fluorescent materials based on carbon quantum dots[D]. Wuhan: Hubei University, 2022.

    [23] LI X, ZHAO L X, WU Y H, et al. Nitrogen and boron co-doped carbon dots as a novel fluorescent probe for fluorogenic sensing of Ce4+ and ratiometric detection of Al3+[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022, 282: 121638.

    [24] Han S J, Dai R Y, Hu Y P, Han L, Fluorometric and colorimetric detection of cerium(IV) ion using carbon dots and bathophenanthroline-disulfonate-ferrum(II) complex[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022, 264: 120295.

    [25] WANG Yin, LI Min, HE Qinqin. J Basic Sci Eng, 2022, 30(5): 1086-1097.

    [26] CHU Xu. The identification and detection of REEs based on fluorescence method using doped semiconductor carbon quantum dots[D]. Hefei: Anhui University, 2021.

    [27] GUO D, LI C, LIU G Y, et al. Oxidase mimetic activity of a metalloporphyrin-containing porous organic polymer and its applications for colorimetric detection of both ascorbic acid and glutathione[J]. ACS Sustain Chem Eng, 2021, 9(15): 5412-5421.

    [28] ZHUO S J, FANG J, LI M, et al. Manganese(II)-doped carbon dots as effective oxidase mimics for sensitive colorimetric determination of ascorbic acid[J]. Microchim Acta, 2019, 186(12): 1-8.

    [29] DARABDHARA G, SHARMA B, DAS M R, et al. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection[J]. Sens Actuat B Chem, 2017, 238: 842-851.

    [30] Song N, Wang Y, Yang X, et al. A novel electrochemical biosensor for the determination of dopamine and ascorbic acid based on graphene oxide/poly (aniline-co-thionine) nanocomposite[J]. J Electroanal Chem, 2020, 873(6): 114352.

    [31] DING L, HE H, ZHOU J, et al. Preparation of high-quality graphene oxide-carbon quantum dots composites and their application for electrochemical sensing of uric acid and ascorbic acid[J]. Nanotechnology, 2021, 32(13): 135501.

    [32] FENG S N, YU L Y, YAN M X, et al. Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid[J]. Talanta, 2021, 224: 121851.

    [33] WANG X, LONG C C, JIANG Z X, et al. in situ synthesis of fluorescent copper nanoclusters for rapid detection of ascorbic acid in biological samples[J]. Anal Methods, 2019, 11(36): 4580-4585

    ZHENG Jiahong, ZHOU Yan. Preparation and Application of Carbon Quantum Dots@Gold Nanoclusters Ratio Fluorescence Sensor[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 661
    Download Citation