• Chinese Journal of Lasers
  • Vol. 51, Issue 7, 0701008 (2024)
Wei Zheng*, Naiji Zhang, Siqi Zhu, Lixin Zhang, and Wei Cai
Author Affiliations
  • State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
  • show less
    DOI: 10.3788/CJL231569 Cite this Article Set citation alerts
    Wei Zheng, Naiji Zhang, Siqi Zhu, Lixin Zhang, Wei Cai. Extreme Ultraviolet Detectors: A Review[J]. Chinese Journal of Lasers, 2024, 51(7): 0701008 Copy Citation Text show less
    References

    [1] Zheng W, Jia L M, Huang F. Vacuum-ultraviolet photon detections[J]. iScience, 23, 101145(2020).

    [2] Jia L M, Zheng W, Huang F. Vacuum-ultraviolet photodetectors[J]. PhotoniX, 1, 22(2020).

    [3] Hofman S. ASML wins SEMI Americas award for EUV lithography[EB/OM]. https:∥www.asml.com/en/news/stories/2020/asml-wins-semi-americas-award-for-euv

    [4] Li Z G, Dou Y P, Xie Z et al. Characteristics of extreme ultraviolet emission from laser-produced plasma on structured Sn target[J]. Chinese Journal of Lasers, 48, 1601005(2021).

    [5] Naulleau P P, Gargini P A, Itani T et al. Extreme ultraviolet lithography 2020[J]. Proceedings of SPIE, 11517, 1151719(2020).

    [6] Rice B J. Extreme ultraviolet (EUV) lithography[M]. Nanolithography, 42-79(2014).

    [7] Silverman P J. Extreme ultraviolet lithography: overview and development status[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 4, 011006(2005).

    [8] Wu B Q, Kumar A. Extreme ultraviolet lithography: a review[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25, 1743-1761(2007).

    [9] Takase K, Kamaji Y, Sakagami N et al. Imaging performance improvement of an extreme ultraviolet microscope[J]. Japanese Journal of Applied Physics, 49, 06(2010).

    [10] Terasawa T, Yamane T, Tanaka T et al. Actinic mask blank inspection and signal analysis for detecting phase defects down to 1.5 nm in height[J]. Japanese Journal of Applied Physics, 48, 06(2009).

    [11] Neuhäusler U, Oelsner A, Slieh J et al. High-resolution actinic defect inspection for extreme ultraviolet lithography multilayer mask blanks by photoemission electron microscopy[J]. Applied Physics Letters, 88, 053113(2006).

    [12] Booth M, Brisco O, Brunton A et al. High-resolution EUV imaging tools for resist exposure and aerial image monitoring[J]. Proceedings of SPIE, 5751, 78-89(2005).

    [13] Nishimoto S, Watanabe K, Kawai T et al. Validation of computed extreme ultraviolet emission spectra during solar ares[J]. Earth, Planets and Space, 73, 79(2021).

    [14] Woods T N, Eparvier F G, Hock R, Chamberlin P, Pesnell W D, Thompson B et al. Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments[M]. The solar dynamics observatory, 115-143(2010).

    [15] Murchikova L, Murphy E J, LIS D C et al. Reconstructing the EUV spectrum of star-forming regions from millimeter recombination lines of H I, He I, and He II[J]. The Astrophysical Journal, 903, 29(2020).

    [16] Bowyer S, Jelinsky P, Christian C et al. The extreme ultraviolet explorer mission[J]. Highlights of Astronomy, 9, 247-254(2016).

    [17] Schmidtke G, Nikutowski B, Jacobi C et al. Solar EUV irradiance measurements by the auto-calibrating EUV spectrometers (SolACES) aboard the international space station (ISS)[J]. Solar Physics, 289, 1863-1883(2014).

    [18] Dere K P. Extreme ultraviolet spectra of solar active regions and their analysis[J]. Solar Physics, 77, 77-93(1982).

    [19] Hans A, Schmidt P, Ozga C et al. Extreme ultraviolet to visible dispersed single photon detection for highly sensitive sensing of fundamental processes in diverse samples[J]. Materials, 11, 869(2018).

    [20] Sasaki A, Sunahara A, Nishihara K et al. Atomic modeling of the plasma EUV sources[J]. High Energy Density Physics, 3, 250-255(2007).

    [21] Dattoli G, Doria A, Gallerano G P et al. Extreme ultraviolet (EUV) sources for lithography based on synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 474, 259-272(2001).

    [22] Lebert R, Bergmann K, Schriever G et al. A gas discharged based radiation source for EUV-lithography[J]. Microelectronic Engineering, 46, 449-452(1999).

    [23] Nakamura N, Kato R, Sakai H et al. High-power EUV free-electron laser for future lithography[J]. Japanese Journal of Applied Physics, 62, SG0809(2023).

    [24] Yu Y, Li Q M, Yang J Y et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 46, 0100005(2019).

    [25] Bartnik A, Fiedorowicz H, Jarocki R et al. Laser-plasma EUV source dedicated for surface processing of polymers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 647, 125-131(2011).

    [26] Ahad I U, Bartnik A, Fiedorowicz H et al. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation[J]. Journal of Biomedical Materials Research Part A, 102, 3298-3310(2014).

    [27] Zürch M, Foertsch S, Matzas M et al. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source[J]. Journal of Medical Imaging, 1, 031008(2014).

    [28] Liu C, Eschen W, Loetgering L et al. Visualizing the ultra-structure of microorganisms using table-top extreme ultraviolet imaging[J]. PhotoniX, 4, 6(2023).

    [29] Barkusky F, Bayer A, Döring S et al. Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source[J]. Optics Express, 18, 4346-4355(2010).

    [30] Pearton S J, Aitkaliyeva A, Xian M H et al. Review: radiation damage in wide and ultra-wide bandgap semiconductors[J]. ECS Journal of Solid State Science and Technology, 10, 055008(2021).

    [31] Zhu S Q, Lin Z G, Wang Z et al. Vacuum-ultraviolet (λ<200 nm) photodetecor array[J]. PhotoniX, 5, 5(2024).

    [32] Moeller S, Brown G, Dakovski G et al. Pulse energy measurement at the SXR instrument[J]. Journal of Synchrotron Radiation, 22, 606-611(2015).

    [33] Sorokin A A. Gas-monitor detector for intense and pulsed VUV/EUV free-electron laser radiation[C], 705, 557-560(2004).

    [34] Richter M, Gottwald A, Kroth U et al. Measurement of gigawatt radiation pulses from a vacuum and extreme ultraviolet free-electron laser[J]. Applied Physics Letters, 83, 2970-2972(2003).

    [35] Kirschner H, Kaser H, Gottwald A. Commissioning of a gas monitor detector for an undulator beamline in the VUV and EUV wavelength range[J]. Journal of Physics: Conference Series, 2380, 012084(2022).

    [36] Samson J A R. Absolute intensity measurements in the vacuum ultraviolet[J]. Journal of the Optical Society of America, 54, 6-15(1964).

    [37] Samson J A R, Haddad G N. Absolute photon-flux measurements in the vacuum ultraviolet[J]. Journal of the Optical Society of America, 64, 47-54(1974).

    [38] Saito N, Suzuki I H. Absolute soft X-ray measurements using an ion chamber[J]. Journal of Synchrotron Radiation, 5, 869-871(1998).

    [39] Saito N, Suzuki I H. Absolute fluence rates of soft X-rays using a double ion chamber[J]. Journal of Electron Spectroscopy and Related Phenomena, 101/102/103, 33-37(1999).

    [40] Sorokin A A, Bican Y, Bonfigt S et al. An X-ray gas monitor for free-electron lasers[J]. Journal of Synchrotron Radiation, 26, 1092-1100(2019).

    [41] Tiedtke K, Feldhaus J, Hahn U et al. Gas detectors for X-ray lasers[J]. Journal of Applied Physics, 103, 094511(2008).

    [42] Bobashev S V, Shmaenok L A. Photoionization quantometer for absolute intensity measurements of vacuum ultraviolet and soft X-ray radiation from laser plasma[J]. Review of Scientific Instruments, 52, 16-20(1981).

    [43] Braune M, Brenner G, Dziarzhytski S et al. A non-invasive online photoionization spectrometer for FLASH 2[J]. Journal of Synchrotron Radiation, 23, 10-20(2016).

    [44] Faatz B, Plönjes E, Ackermann S et al. Simultaneous operation of two soft X-ray free-electron lasers driven by one linear accelerator[J]. New Journal of Physics, 18, 062002(2016).

    [45] Grünert J, Carbonell M P, Dietrich F et al. X-ray photon diagnostics at the European XFEL[J]. Journal of Synchrotron Radiation, 26, 1422-1431(2019).

    [46] Juranić P, Rehanek J, Arrell C A et al. SwissFEL Aramis beamline photon diagnostics[J]. Journal of Synchrotron Radiation, 25, 1238-1248(2018).

    [47] Maltezopoulos T, Dietrich F, Freund W et al. Operation of X-ray gas monitors at the European XFEL[J]. Journal of Synchrotron Radiation, 26, 1045-1051(2019).

    [48] Song S, Alonso-Mori R, Chollet M et al. Measurement of the absolute number of photons of the hard X-ray beamline at the Linac Coherent Light Source[J]. Journal of Synchrotron Radiation, 26, 320-327(2019).

    [49] Burian T, Hájková V, Chalupský J et al. Soft X-ray free-electron laser induced damage to inorganic scintillators[J]. Optical Materials Express, 5, 254-264(2015).

    [50] Liu Z Y, Liu S, Wang K et al. Measurement and numerical studies of optical properties of YAG∶Ce phosphor for white light-emitting diode packaging[J]. Applied Optics, 49, 247-257(2010).

    [51] Krzywinski J, Andrejczuk A, Bionta R M et al. Saturation of a Ce∶Y3Al5O12 scintillator response to ultra-short pulses of extreme ultraviolet soft X-ray and X-ray laser radiation[J]. Optical Materials Express, 7, 665-675(2017).

    [52] Bahrenberg L, Herbert S, Mathmann T et al. Design of structured YAG∶Ce scintillators with enhanced outcoupling for image detection in the extreme ultraviolet[J]. Optics Letters, 42, 3848-3851(2017).

    [53] Szilagyi J M. Extreme ultraviolet spectral streak camera[D], 1682(2010).

    [54] Baciero A, Placentino L, McCarthy K J et al. Vacuum ultraviolet and X-ray luminescence efficiencies of Y3Al5O12∶Ce phosphor screens[J]. Journal of Applied Physics, 85, 6790-6796(1999).

    [55] Baciero A, McCarthy K J, Acedo M A et al. A study of the response of Y3Al5O12∶Ce phosphor powder screens in the vacuum ultraviolet and soft X-ray regions using synchrotron radiation[J]. Journal of Synchrotron Radiation, 7, 215-220(2000).

    [56] Benk M, Bergmann K. Adaptive spatially resolving detector for the extreme ultraviolet with absolute measuring capability[J]. The Review of Scientific Instruments, 80, 033113(2009).

    [57] Chai K B, Bellan P M. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection[J]. The Review of Scientific Instruments, 84, 123504(2013).

    [58] Yang T I, Hui Y Y, Lo J I et al. Imaging extreme ultraviolet radiation using nanodiamonds with nitrogen-vacancy centers[J]. Nano Letters, 23, 9811-9816(2023).

    [59] Tanaka M, Nishikino M, Yamatani H et al. Hydrothermal method grown large-sized zinc oxide single crystal as fast scintillator for future extreme ultraviolet lithography[J]. Applied Physics Letters, 91, 231117(2007).

    [60] Furukawa Y, Tanaka M, Nakazato T et al. Temperature dependence of scintillation properties for a hydrothermal-method-grown zinc oxide crystal evaluated by nickel-like silver laser pulses[J]. Journal of the Optical Society of America B, 25, B118-B121(2008).

    [61] Nakazato T, Furukawa Y, Tanaka M et al. Hydrothermal-method-grown ZnO single crystal as fast EUV scintillator for future lithography[J]. Journal of Crystal Growth, 311, 875-877(2009).

    [62] Furukawa Y, Tanaka M, Nishikino M et al. UV fluorescence of hydrothermal method grown ZnO for fast EUV scintillators[C](2008).

    [63] Yamanoi K, Sakai K, Nakazato T et al. Response-time improved hydrothermal-method-grown ZnO scintillator for XFEL timing-observation[J]. Optical Materials, 32, 1305-1308(2010).

    [64] Yamanoi K, Sakai K, Cadatal-Raduban M et al. Indium-doped ZnO scintillator with 3-ps response time for accurate synchronization of optical and X-ray free electron laser pulses[J]. IEEE Transactions on Nuclear Science, 59, 2298-2300(2012).

    [65] Shimizu T, Yamamoi K, Estacio E et al. Response-time improved hydrothermal-method-grown ZnO scintillator for soft X-ray free-electron laser timing-observation[J]. The Review of Scientific Instruments, 81, 033102(2010).

    [66] Lin R C, Zhu Y M, Chen L et al. Ultrafast (600 ps) α‑ray scintillators[J]. PhotoniX, 3, 9(2022).

    [67] Kano M, Wakamiya A, Yamanoi K et al. Fabrication of in-doped ZnO scintillator mounted on a vacuum flange[J]. IEEE Transactions on Nuclear Science, 59, 2290-2293(2012).

    [68] Arita R, Nakazato T, Shimizu T et al. High spatial resolution ZnO scintillator for an in situ imaging device in EUV region[J]. Optical Materials, 36, 2012-2015(2014).

    [69] Nakazato T, Hori T, Shimizu T et al. Spatial resolution evaluation of ZnO scintillator as an in-situ imaging device in EUV region[J]. IEEE Transactions on Nuclear Science, 61, 462-466(2014).

    [70] Watanabe K, Inn E C Y. Intensity measurements in the vacuum ultraviolet[J]. Journal of the Optical Society of America, 43, 32-35(1953).

    [71] McKinsey D N, Brome C R, Butterworth J S et al. Fluorescence efficiencies of thin scintillating films in the extreme ultraviolet spectral region[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 132, 351-358(1997).

    [72] Samson J A R, Cairns R B. A carbon film-scintillator combination suitable for the selective detection of radiation in the extreme ultraviolet[J]. Applied Optics, 4, 915-916(1965).

    [73] Bruner E C. Absolute quantum efficiency of sodium salicylate for excitation by extreme ultraviolet[J]. Journal of the Optical Society of America, 59, 204-211(1969).

    [74] Iglesias E J, Mitschker F, Fiebrandt M et al. In situ measurement of VUV/UV radiation from low-pressure microwave-produced plasma in Ar/O2 gas mixtures[J]. Measurement Science and Technology, 28, 085501(2017).

    [75] Han J, Park W, Mauchauffé R et al. Real-time VUV radiation monitoring in low-pressure hydrogen plasma based on fluorescence of sodium salicylate[J]. Measurement Science and Technology, 34, 025006(2023).

    [76] Kumar V, Datta A K. Vacuum ultraviolet scintillators: sodium salicylate and p-terphenyl[J]. Applied Optics, 18, 1414-1417(1979).

    [78] Yang T I, Azuma T, Huang Y W et al. Stimulated emission cross sections and temperature-dependent spectral shifts of neutral nitrogen-vacancy centers in diamonds[J]. Journal of the Chinese Chemical Society, 70, 451-459(2023).

    [79] Lu H C, Lo J I, Peng Y C et al. Photoluminescence of diamond containing nitrogen vacancy defects as a sensor of temperature upon exposure to vacuum- and extreme-ultraviolet radiation[J]. Physical Chemistry Chemical Physics, 22, 26982-26986(2020).

    [80] Lu H C, Lo J I, Peng Y C et al. Nitrogen-vacancy centers in diamond for high-performance detection of vacuum ultraviolet, extreme ultraviolet, and X-rays[J]. ACS Applied Materials & Interfaces, 12, 3847-3853(2020).

    [81] Siegmund O H W, Malina R F, Talmi Y. Detection of extreme UV and soft X-rays with microchannel plates: a review[M]. Multichannel image detectors volume 2, 253-275(1983).

    [82] Tremsin A S, McPhate J B, Steuwer A et al. High-resolution strain mapping through time-of-flight neutron transmission diffraction with a microchannel plate neutron counting detector[J]. Strain, 48, 296-305(2012).

    [83] Laprade B N, Dykstra M W, Langevin F. Development of an ultrasmall-pore microchannel plate for space sciences applications[J]. Proceedings of SPIE, 2808, 72-85(1996).

    [84] Demarest J A, Watson R L. Beam-foil spectroscopy in the EUV employing a position sensitive microchannel plate[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 24/25, 296-300(1987).

    [85] Fraser G W. Imaging detectors for FUV and EUV wavelengths[J]. Advances in Space Research, 11, 155-166(1991).

    [86] Vallerga J V, Siegmund O H W, Vedder P W et al. Investigations of the small-scale flat field response of microchannel plate detectors in the far and extreme ultraviolet[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 310, 317-322(1991).

    [87] Tremsin A S, Jelinsky S R, Siegmund O H W. Quantum efficiency and spatial resolution of microsphere plates stacked with microchannel plates[J]. Proceedings of SPIE, 3114, 272-282(1997).

    [88] Lapington J S. Developments in imaging devices for microchannel plate detectors[J]. Proceedings of SPIE, 4854, 191-202(2003).

    [89] Bannister N P, Lapington J S, Barstow M A et al. High-resolution imaging microchannel plate detector for EUV spectrometry[J]. Proceedings of SPIE, 4140, 199-210(2000).

    [90] Pfeifer M, Barnstedt J, Diebold S et al. Characterisation of low power readout electronics for a UV microchannel plate detector with cross-strip readout[J]. Proceedings of SPIE, 9144, 914438(2014).

    [91] Sandel B R, Broadfoot A L, Curtis C C, Burch J L et al. The extreme ultraviolet imager investigation for the image mission[M]. The image mission, 197-242(2000).

    [92] Miao Z H. A single photon system based on wedge and strip anodes detector[D](2009).

    [93] Ni Q L. Study on characteristic performance of a MCP-based photon-counting imaging detector[J]. Acta Optica Sinica, 33, 1104001(2013).

    [94] Zhu X P, Zhao B S, Liu Y A et al. Experimental study on 30.4 nm extreme ultraviolet imaging detector[J]. Acta Optica Sinica, 28, 1925-1929(2008).

    [95] Bu S F, Ni Q L, He L P et al. Microchannel plate photon counting detector in UV range[J]. Chinese Journal of Optics and Applied Optics, 5, 302-309(2012).

    [96] Stock J M, Siegmund O H W, Hurwitz M et al. Berkeley EUV spectrometer microchannel plate detectors for ORFEUS[J]. Proceedings of SPIE, 2006, 128-138(1993).

    [97] Pfeifer M, Barnstedt J, Bauer C et al. Low-power readout electronics for micro channel plate detectors with cross-strip anodes[J]. Proceedings of SPIE, 8443, 84432O(2012).

    [98] Schindhelm E R, Green J C, Siegmund O H W et al. Microchannel plate detector technology potential for LUVOIR and HabEx[J]. Proceedings of SPIE, 10397, 1039711(2017).

    [99] Ertley C, Siegmund O, Vallerga J et al. Microchannel plate detectors for future NASA UV observatories[J]. Proceedings of SPIE, 10699, 106993H(2018).

    [100] Siegmund O H W, Vallerga J V, Darling N T et al. UV imaging detectors with high performance microchannel plates[J]. Proceedings of SPIE, 11118, 111180N(2019).

    [102] Korde R, Cable J S, Canfield L R. One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes[J]. IEEE Transactions on Nuclear Science, 40, 1655-1659(1993).

    [103] Canfield L R, Kerner J A, Korde R S. Silicon photodiodes optimized for the EUV and soft X-ray regions[J]. Proceedings of SPIE, 1344, 372-377(1990).

    [104] Hartmann R, Hauff D, Lechner P et al. Low energy response of silicon pn-junction detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 377, 191-196(1996).

    [105] Šakić A, Nanver L K, Scholtes T L M et al. Boron-layer silicon photodiodes for high-efficiency low-energy electron detection[J]. Solid State Electronics, 65/66, 38-44(2011).

    [106] Shi L, Sarubbi F, Nihtianov S N et al. High performance silicon-based extreme ultraviolet (EUV) radiation detector for industrial application[C], 1877-1882(2009).

    [107] Shi L, Nihtianov S, Nanver L K et al. Stability characterization of high-sensitivity silicon-based EUV photodiodes in a detrimental environment[J]. IEEE Sensors Journal, 13, 1699-1707(2013).

    [108] Aruev P N, Barysheva M M, Ber B Y et al. Silicon photodiode with selective Zr/Si coating for extreme ultraviolet spectral range[J]. Quantum Electronics, 42, 943-948(2012).

    [111] Edmond J A, Kong H S, Carter C H, Jr. Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC[J]. Physica B: Condensed Matter, 185, 453-460(1993).

    [112] Yan F, Qin C, Zhao J H et al. Low-noise visible-blind UV avalanche photodiodes with edge terminated by 2° positive bevel[J]. Electronics Letters, 38, 335-336(2002).

    [113] Guo X, Beck A, Yang B et al. Low dark current 4H-SiC avalanche photodiodes[J]. Electronics Letters, 39, 1-2(2003).

    [114] Yan F, Xin X B, Aslam S et al. 4H-SiC UV photo detectors with large area and very high specific detectivity[J]. IEEE Journal of Quantum Electronics, 40, 1315-1320(2004).

    [115] Xin X, Yan F, Koeth T W et al. Demonstration of 4H-SiC visible-blind EUV and UV detector with large detection area[J]. Electronics Letters, 41, 1192-1193(2005).

    [116] Torrisi A, Wachulak P, Fiedorowicz H et al. Silicon carbide detectors for diagnostics of laser-produced plasmas[J]. Proceedings of SPIE, 11032, 110320W(2019).

    [117] Seely J F, Kjornrattanawanich B, Holland G E et al. Response of a SiC photodiode to extreme ultraviolet through visible radiation[J]. Optics Letters, 30, 3120-3122(2005).

    [118] Torrisi A, Wachulak P W, Fiedorowicz H et al. SiC detectors for evaluation of laser-plasma dynamics employing gas-puff targets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 922, 250-256(2019).

    [119] Torrisi A, Wachulak P, Fiedorowicz H et al. Characterization of Si and SiC detectors for laser-generated plasma monitoring in short wavelength range[J]. Journal of Instrumentation, 15, C05027(2020).

    [120] Gottwald A, Kroth U, Kalinina E et al. Optical properties of a Cr/4H-SiC photodetector in the spectral range from ultraviolet to extreme ultraviolet[J]. Applied Optics, 57, 8431-8436(2018).

    [121] Hu J, Xin X B, Joseph C L et al. 1×16 Pt/4H-SiC Schottky photodiode array for low-level EUV and UV spectroscopic detection[J]. IEEE Photonics Technology Letters, 20, 2030-2032(2008).

    [122] Wang Z Y, Zhou D, Xu W Z et al. 4H-SiC δn-i-p extreme ultraviolet detector with gradient doping-induced surface junction[J]. IEEE Electron Device Letters, 43, 906-909(2022).

    [123] Zhang R J, Liu J, Liu G et al. A dual P-layer 4H-SiC p-i-n photodetector for the detection from extreme ultraviolet to ultraviolet-A[J]. Electronics Letters, 59, e12953(2023).

    [124] Malinowski P E, Duboz J Y, de Moor P et al. EUV detectors based on AlGaN-on-Si Schottky photodiodes[J]. Proceedings of SPIE, 8073, 807302(2011).

    [125] Rogalski A, Bielecki Z, Mikołajczyk J et al. Ultraviolet photodetectors: from photocathodes to low-dimensional solids[J]. Sensors, 23, 4452(2023).

    [126] Malinowski P E, Duboz J Y, John J et al. AlGaN-on-Si backside illuminated photodetectors for the extreme ultraviolet (EUV) range[J]. Proceedings of SPIE, 7726, 772617(2010).

    [127] Malinowski P E, Duboz J Y, de Moor P et al. AlGaN-on-Si-based 10-μm pixel-to-pixel pitch hybrid imagers for the EUV range[J]. IEEE Electron Device Letters, 32, 1561-1563(2011).

    [128] Malinowski P E, Duboz J Y, de Moor P et al. Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes[J]. Applied Physics Letters, 98, 141104(2011).

    [129] Barkusky F, Peth C, Bayer A et al. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range[J]. The Review of Scientific Instruments, 80, 093102(2009).

    [130] Malinowski P E, John J, Barkusky F et al. Radiation hardness of AlxGa1-xN photodetectors exposed to extreme ultraviolet (EUV) light beam[J]. Proceedings of SPIE, 7361, 73610T(2009).

    [131] Cai Q, You H F, Guo H et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays[J]. Light, Science & Applications, 10, 94(2021).

    [132] Reverchon J L, Bansropun S, Robo J A et al. First demonstration and performance of AlGaN based focal plane array for deep-UV imaging[J]. Proceedings of SPIE, 7474, 74741G(2009).

    [133] Reverchon J L, Bansropun S, Truffer J P et al. Performances of AlGaN-based focal plane arrays from 10 nm to 200 nm[J]. Proceedings of SPIE, 7691, 769109(2010).

    [134] Malinowski P E, Duboz J Y, de Moor P et al. 10 µm pixel-to-pixel pitch hybrid backside illuminated AlGaN-on-Si imagers for solar blind EUV radiation detection[C](2010).

    [135] Prestopino G, Santoni E, Verona C et al. Diamond based Schottky photodiode for radiation therapy in vivo dosimetry[J]. Materials Science Forum, 879, 95-100(2016).

    [136] Pace E, di Benedetto R, Scuderi S. Fast stable visible-blind and highly sensitive CVD diamond UV photodetectors for laboratory and space applications[J]. Diamond and Related Materials, 9, 987-993(2000).

    [137] Balducci A, de Sio A, Marinelli M et al. Extreme UV single crystal diamond photodetectors by chemical vapor deposition[J]. Diamond and Related Materials, 14, 1980-1983(2005).

    [138] Almaviva S, Marinelli M, Milani E et al. Extreme UV photodetectors based on CVD single crystal diamond in a p-type/intrinsic/metal configuration[J]. Diamond and Related Materials, 18, 101-105(2009).

    [139] Almaviva S, Marinelli M, Milani E et al. Extreme UV single crystal diamond Schottky photodiode in planar and transverse configuration[J]. Diamond and Related Materials, 19, 78-82(2010).

    [140] Ciancaglioni I, di Venanzio C, Marinelli M et al. Influence of the metallic contact in extreme-ultraviolet and soft X-ray diamond based Schottky photodiodes[J]. Journal of Applied Physics, 110, 054513(2011).

    [141] Hochedez J F, Bergonzo P, Castex M C et al. Diamond UV detectors for future solar physics missions[J]. Diamond and Related Materials, 10, 673-680(2001).

    [142] BenMoussa A, Dammasch I E, Hochedez J F et al. Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2[J]. Astronomy & Astrophysics, 508, 1085-1094(2009).

    [143] Benmoussa A, Schühle U, Haenen K et al. PIN diamond detector development for LYRA, the solar VUV radiometer on board PROBA II[J]. Physica Status Solidi (a), 201, 2536-2541(2004).

    [144] BenMoussa A, Hochedez J F, Schühle U et al. Diamond detectors for LYRA, the solar VUV radiometer on board PROBA2[J]. Diamond and Related Materials, 15, 802-806(2006).

    [145] BenMoussa A, Theissen A, Scholze F et al. Performance of diamond detectors for VUV applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 568, 398-405(2006).

    Wei Zheng, Naiji Zhang, Siqi Zhu, Lixin Zhang, Wei Cai. Extreme Ultraviolet Detectors: A Review[J]. Chinese Journal of Lasers, 2024, 51(7): 0701008
    Download Citation