[1] YANG N, HOU G Q, LI F F, et al. Regulating afterglow of LiGa5O8: Cr3+ for dynamic anti-counterfeiting[J]. Opt Mater, 2024, 147: 114593.
[2] WANG G H, WANG T, BAI Y, et al. High-temperature dynamic luminescence of MgGa2O4: Tb3+, Er3+ phosphors for advanced anti-counterfeiting and information encryption[J]. Ceram Int, 2024, 50(1): 1130–1136.
[3] LI G G, TIAN Y, ZHAO Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs[J]. Chem Soc Rev, 2015, 44(23): 8688–8713.
[4] CHEN G J, LUO L H, LI W P, et al. Designing tunable luminescence in Ce3+/Eu2+-codoped Ca8Zn(SiO4)4Cl2 phosphors for white light-emitting diode and optical anti-counterfeiting applications[J]. Mater Today Chem, 2022, 26: 101038.
[5] XIAO X, SUN Q, LI Z L, et al. Synthetic design of Ca5(PO4)3F: Eu2+/3+ for multi-functional applications in anti-counterfeiting, temperature and pressure sensing[J]. Ceram Int, 2024, 50(1): 1461–1473.
[6] GAO R B, CHEN C H, JIN M K, et al. Rare earth-based halide double perovskite phosphor Cs2NaScCl6: Yb3+, Er3+ for multi-mode anti-counterfeiting application[J]. Mater Res Bull, 2024, 172: 112651.
[7] TIAN S L, FENG P, DING S S, et al. A color-tunable persistent luminescence material LiTaO3: Pr3+ for dynamic anti-counterfeiting[J]. J Alloys Compd, 2022, 899: 163325.
[8] DORENBOS P. A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds[J]. ECS J Solid State Sci Technol, 2012, 2(2): R3001–R3011.
[9] YE S, XIAO F, PAN Y X, et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties[J]. Mater Sci Eng R Rep, 2010, 71(1): 1–34.
[10] HUANG X X, SUN J C, SHENG X W, et al. Understanding the emission redshift in Sr2Si5N8: Eu2+ with increasing Eu doping concentration from density functional calculations[J]. J Lumin, 2017, 185: 187–191.
[11] LI C Y, XIAO Q H, FU Y, et al. Effects of Eu2+ doping on the structure and luminescence properties of strontium borosilicate glasses[J]. J Non Cryst Solids, 2021, 552: 120453.
[12] WEI D L, SEO H J. Determination of phase-formation of (Mg1−xMnx)2Al4Si5O18 (x = 0–1) cordierite solid-solutions via crystallographic sites and luminescence dynamics of Mn2+ centers[J]. J Mater Chem C, 2020, 8(23): 7899–7907.
[13] SHAO B H, WANG C. BaCa13Mg2(SiO4)8: Ce3+—A blue phosphor with high brightness, high internal quantum efficiency and excellent thermal stability for w-LEDs[J]. Ceram Int, 2023, 49(11): 19301–19308.
[14] YANG J J, HE P H, XIE Y J, et al. A high absorption efficiency blue-emitting phosphor NaSrScSi2O7: Eu2+ for near-UV-pumped white light-emitting diodes[J]. J Alloys Compd, 2022, 903: 163815.
[15] WAN Y J, DANG P P, LIU D J, et al. Highly efficient narrow-band green-emitting Na3K5(Li3SiO4)8: Eu2+ phosphor with low thermal quenching[J]. Chem Mater, 2023, 35(24): 10702–10712.
[16] CHEN J, LIU Y G, LIU H K, et al. The luminescence properties of novel -Mg2Al4Si5O18: Eu2+ phosphor prepared in air[J]. RSC Adv, 2014, 4(35): 18234–18239.
[17] CHEN W B, WANG Y Z, XU J, et al. Red-emitting cordierite ceramic enabling general healthy warm white laser lighting[J]. Laser Photonics Rev, 2024, 18(2): 2300963.
[18] HU T, NING L X, GAO Y, et al. Glass crystallization making red phosphor for high-power warm white lighting[J]. Light Sci Appl, 2021, 10(1): 56.
[19] STEFASKA D, DERE P J. High efficiency emission of Eu2+ located in channel and Mg-site of Mg2Al4Si5O18 cordierite and its potential as a Bi-functional phosphor toward optical thermometer and white LED application[J]. Adv Opt Mater, 2020, 8(22): 2001143.
[20] SONG K, YU H, NIE Q M, et al. Synthesis and luminescence characteristics of Mg2Al4Si5O18: Eu2+ and nitrided Mg2Al4Si5O18: Eu2+ phosphors[J]. J Lumin, 2020, 224: 117317.
[21] KIM D, KIM S C, BAE J S, et al. Eu2+-activated alkaline-earth halophosphates, M5(PO4)3X: Eu2+ (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-selective crystal field effect[J]. Inorg Chem, 2016, 55(17): 8359–8370.
[22] YU H, ZHOU L Y, YE R G, et al. Tunable emission of Li4SrCaSi2O4–yN2y/3: Eu2+ phosphors based on anion substitution induction for WLEDs and optical thermometry[J]. Dalton Trans, 2022, 51(18): 7333–7342.
[23] WU H Y, LI H M, JIANG L H, et al. Design of a mixed-anionic-ligand system for a blue-light-excited orange-yellow emission phosphor Ba1.31Sr3.69(BO3)3Cl: Eu2+[J]. J Mater Chem C, 2020, 8(9): 3040–3050.
[24] CHEN C J, ZHUANG Y X, TU D, et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO[J]. Nano Energy, 2020, 68: 104329.
[25] HUANG Y L, CHO E, JANG K, et al. A blue luminescence glass-ceramics of Eu2+ ions activated Li2O–BaO–B2O3[J]. J Rare Earths, 2008, 26(2): 215–219.
[26] LIU K, SCHMEDAKE T A, TSU R. A comparative study of colloidal silica spheres: Photonic crystals versus Bragg’s law[J]. Phys Lett A, 2008, 372(24): 4517–4520.
[27] SINGH V, CHAKRADHAR R P S, RAO J L, et al. Luminescence and EPR studies of Eu2+ doped BaAl12O19 blue light emitting phosphors[J]. J Lumin, 2010, 130(4): 703–708.
[28] WANG Y Y, ZHANG S J, ZHANG Y M, et al. Oxygen vacancy defect engineering of porous single-crystal VO2 nanobelts for aqueous zinc ion battery cathodes[J]. Electrochim Acta, 2024, 475: 143623.
[29] ZHU H R, ZHANG C, XIE K F, et al. Photocatalytic degradation of organic pollutants over MoS2/Ag-ZnFe2O4 Z-scheme heterojunction: Revealing the synergistic effects of exposed crystal facets, defect engineering, and Z-scheme mechanism[J]. Chem Eng J, 2023, 453: 139775.
[30] ZOU X K, ZHANG H R, LI W, et al. Ultra-wide vis–NIR Mg2Al4Si5O18: Eu2+, Cr3+ phosphor containing unusual NIR luminescence induced by Cr3+ occupying tetrahedral coordination for hyperspectral imaging[J]. Adv Opt Mater, 2022, 10(19): 2200882.
[31] LI H, LI R, CHANG C. Red persistent luminescent Sr3Al2O5–xSxCl2:Eu2+, Tm3+ phosphors based on lattice engineering[J]. Ceramics International, 2023, 49(6): 9893–9900.
[32] ALI KHAN S, KHAN N Z, SOHAIL M, et al. Modern aspects of strategies for developing single-phase broadly tunable white light-emitting phosphors[J]. J Mater Chem C, 2021, 9(38): 13041–13071.
[33] SUN J B, XIONG Y, CAO F B, et al. Sites occupancy of Eu2+/Mn2+ codoped Ca2(Mg0.5Al0.5)(Si1.5Al0.5)O7 blue–green phosphors[J]. Opt Mater, 2022, 124: 112037.
[34] ZHU Y L, LIANG Y J, LIU S Q, et al. New insight into the structure evolution and site preferential occupancy of Na2Ba6(Si2O7)(SiO4)2: Eu2+ phosphor by cation substitution effect[J]. J Alloys Compd, 2017, 698: 49–59.
[35] TIAN H D, SETO T, ZHOU Y H, et al. Nano-coprecipitation route synthesis of highly-efficient submicron (Sr, Ba)2SiO4: Eu2+ phosphors with enhanced thermal stability for MicroLED color conversion[J]. ACS Appl Mater Interfaces, 2023, 15(23): 28215–28227.
[36] ZHANG S Y, NAKAI Y, TSUBOI T, et al. Luminescence and microstructural features of Eu-activated LiBaPO4 phosphor[J]. Chem Mater, 2011, 23(5): 1216–1224.