[1] TANG G Y, NI J J, ZHAO Y H, et al. A survey of object detection for UAVs based on deep learning[J]. Remote Sensing, 2023, 16(1): 149.
[2] TAN L, HUANG X K, LV X Y, et al. Strong interference UAV motion target tracking based on target consistency algorithm[J]. Electronics, 2023, 12(8): 1773.
[3] BAO W X, HUANG C P, HU G S, et al. Detection of fusarium head blight in wheat using UAV remote sensing based on parallel channel space attention[J]. Computers and Electronics in Agriculture, 2024, 217: 108630.
[4] ZHANG Q, ZHANG H Y, LU X W. Adaptive feature fusion for small object detection[J]. Applied Sciences, 2022, 12(22): 11854.
[5] REN S Q, HE K M, ROSS G, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016: 779-788.
[7] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision(ECCV). Cham: Springer, 2020: 213-229.
[8] MAKTAB DAR OGHAZ M, RAZAAK M, REMAGNINO P. Enhanced single shot small object detector for aerial imagery using super-resolution, feature fusion and deconvolution[J]. Sensors, 2022, 22(12): 4339.
[9] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//IEEE/CVF International Conference on Computer Vision(ICCVW). Montreal: IEEE, 2021: 2778-2788.
[10] ZHANG Y, LIU X F, GUO J, et al. Surface defect detection of strip-steel based on an improved PP-YOLOE-m detection network[J]. Electronics, 2022, 11(16): 2603.
[11] LIN J, LIN H F, WANG F. STPM_SAHI: a small-target forest fire detection model based on swin transformer and slicing aided hyper inference[J]. Forests, 2022, 13(10): 1603.
[12] HAN J M, DING J, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021: 2786-2795.
[13] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2024: 16965-16974.
[14] KANG M, TING C-M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[15] NOOHI M, FARAJI A, SADROSSADAT S A, et al. Modeling and implementation of a novel active voltage balancing circuit using deep recurrent neural network with dropout regularization[J]. International Journal of Circuit Theory and Applications, 2023, 51(5): 2351-2374.
[16] FJELLSTRM C. Long short-term memory neural network for financial time series[C]//IEEE International Conference on Big Data (Big Data). Osaka: IEEE, 2022: 3496-3504.
[17] LIU X Q, YU H-F, DHILLON I S, et al. Learning to encode position for transformer with continuous dynamical model[C]//International Conference on Machine Learning. Vienna: PMLR, 2020: 6327-6335.
[18] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach: IEEE, 2019: 658-666.
[19] YE Y S, LIU Q, LI L L, et al. Improving insulator fault detection with effective-YOLOv7 network[J]. Journal of Electronic Imaging, 2023, 32(6): 063021.
[20] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[R]. Los Alamos: arXiv Preprint, 2023: arXiv: 2307. 07662.
[21] ZHOU X, JIANG L, GUAN X J, et al. Infrared small target detection algorithm with complex background based on YOLO-NWD[C]//Proceedings of the 4th International Conference on Image Processing and Machine Vision. Hong Kong: Association for Computing Machinery, 2022: 6-12.
[22] CHEN J R, KAO S-H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver: IEEE, 2023: 12021-12031.
[23] LI X, ZHONG Z H, WU J L, et al. Expectation-maximization attention networks for semantic segmentation[C]//IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019: 9167-9176.