• Advanced Photonics
  • Vol. 6, Issue 4, 046001 (2024)
Xinyuan Hu1,†, Shulin Wang1, Chengzhi Qin1,*, Chenyu Liu1..., Lange Zhao1, Yinglan Li1, Han Ye1, Weiwei Liu1,2, Stefano Longhi3,4,*, Peixiang Lu1,2,* and Bing Wang1,*|Show fewer author(s)
Author Affiliations
  • 1Huazhong University of Science and Technology, School of Physics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 2Wuhan Institute of Technology, Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan, China
  • 3Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
  • 4IFISC (UIB-CSIC), Instituto de Fisica Interdisciplinary Sistemas Complejos, Palma de Mallorca, Spain
  • show less
    DOI: 10.1117/1.AP.6.4.046001 Cite this Article Set citation alerts
    Xinyuan Hu, Shulin Wang, Chengzhi Qin, Chenyu Liu, Lange Zhao, Yinglan Li, Han Ye, Weiwei Liu, Stefano Longhi, Peixiang Lu, Bing Wang, "Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices," Adv. Photon. 6, 046001 (2024) Copy Citation Text show less
    References

    [1] J. B. Krieger et al. Time evolution of Bloch electrons in a homogeneous electric field. Phys. Rev. B, 33, 5494-5500(1986).

    [2] K. C. Nowack et al. Coherent control of a single electron spin with electric fields. Science, 318, 1430-1433(2007).

    [3] H. Lignier et al. Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett., 99, 220403(2007).

    [4] C. Waschke et al. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett., 70, 3319-3322(1993).

    [5] T. Hartmann et al. Dynamics of Bloch oscillations. New J. Phys., 6, 2(2004).

    [6] C. Qin et al. Discrete diffraction and Bloch oscillations in non-Hermitian frequency lattices induced by complex photonic gauge fields. Phys. Rev. B, 101, 064303(2020).

    [7] N. H. Shon et al. On the dynamic localization in 1D tight-binding systems. J. Phys.: Condens. Matter, 4, L611(1992).

    [8] N. H. Shon et al. Dynamic localization of acoustic waves in superlattices. Phys. Rev. Lett., 71, 2935-2938(1993).

    [9] J. Wan et al. Dynamic localization and quasi-Bloch oscillations in general periodic ac-dc electric fields. Phys. Rev. B, 70, 125311(2004).

    [10] E. Haller et al. Inducing transport in a dissipation-free lattice with super Bloch oscillations. Phys. Rev. Lett., 104, 200403(2010).

    [11] R. A. Caetano et al. Wave packet dynamics under superposed DC and AC fields: super Bloch oscillations, resonant directed motion and delocalization. Phys. Lett. A, 375, 2770-2774(2011).

    [12] K. Kudo et al. Theoretical analysis of super-Bloch oscillations. Phys. Rev. A, 83, 053627(2011).

    [13] C. Herrero-Gómez et al. Super Bloch oscillations in the Peyrard-Bishop-Holstein model. Phys. Rev. A, 376, 555-558(2012).

    [14] S. Longhi et al. Correlated super-Bloch oscillations. Phys. Rev. B, 86, 075143(2012).

    [15] E. Díaz et al. Super-Bloch oscillations with modulated interaction. Phys. Rev. A, 87, 015601(2013).

    [16] Z. Turker et al. Super Bloch oscillation in a PT symmetric system. Phys. Rev. A, 380, 2260-2264(2016).

    [17] Z. A. Geiger et al. Observation and uses of position-space Bloch oscillations in an ultracold gas. Phys. Rev. Lett., 120, 213201(2018).

    [18] C. Qin et al. Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator. Phys. Rev. A, 97, 063838(2018).

    [19] Z. Huang et al. Transient dynamics of super Bloch oscillations of a 1D Holstein Polaron under the influence of an external AC electric field. Ann. Phys., 531, 1800303(2019).

    [20] A. Cao et al. Transport controlled by Poincaré orbit topology in a driven inhomogeneous lattice gas. Phys. Rev. Res., 2, 032032(2020).

    [21] F. S. Passos et al. From super-Bloch oscillations to sudden self-trapping in Bose–Einstein condensates with inter-atomic interactions. Nonlinear Dyn., 102, 329-337(2020).

    [22] U. Ali et al. Super-Bloch oscillations with parametric modulation of a parabolic trap(2022).

    [23] S. X. Xiao et al. Rabi spectroscopy of super-Bloch oscillations in optical lattice clock(2023).

    [24] L. Yuan et al. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett., 41, 741-744(2016).

    [25] C. Qin et al. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett., 120, 133901(2018).

    [26] K. Wang et al. Topological complex-energy braiding of non-Hermitian bands. Nature, 598, 59-64(2021).

    [27] L. Zheng et al. Chiral Zener tunneling in non-Hermitian frequency lattices. Opt. Lett., 47, 4644-4647(2022).

    [28] H. Huang et al. Experimental observation of the spectral self-imaging effect with a four-wave mixing time lens. Opt. Lett., 48, 1522-1525(2023).

    [29] A. Senanian et al. Programmable large-scale simulation of Bosonic transport in optical synthetic frequency lattices. Nat. Phys., 19, 1333-1339(2023).

    [30] A. Regensburger et al. Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett., 107, 233902(2011).

    [31] M. A. Miri et al. Optical mesh lattices with PT symmetry. Phys. Rev. A, 86, 023807(2012).

    [32] A. Regensburger et al. Parity-time synthetic photonic lattices. Nature, 488, 167-171(2012).

    [33] A. Regensburger et al. Observation of defect states in PT-symmetric optical lattices. Phys. Rev. Lett., 110, 223902(2013).

    [34] M. Wimmer et al. Optical diametric drive acceleration through action-reaction symmetry breaking. Nat. Phys., 9, 780-784(2013).

    [35] M. Wimmer et al. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys., 13, 545-550(2017).

    [36] S. Wang et al. PT-symmetric Talbot effect in a temporal mesh lattice. Phys. Rev. A, 98, 043832(2018).

    [37] S. Weidemann et al. Topological funneling of light. Science, 368, 311-314(2020).

    [38] A. Steinfurth et al. Observation of photonic constant-intensity waves and induced transparency in tailored non-Hermitian lattices. Sci. Adv., 8, eabl7412(2022).

    [39] S. Wang et al. High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices. Nat. Commun., 13, 7653(2022).

    [40] S. Weidemann et al. Topological triple phase transition in non-Hermitian Floquet quasicrystals. Nature, 601, 354-359(2022).

    [41] L. Yuan et al. Temporal modulation brings metamaterials into new era. Light Sci. Appl., 11, 173(2022).

    [42] S. Wang et al. Photonic Floquet Landau-Zener tunneling and temporal beam splitters. Sci. Adv., 9, eadh0415(2023).

    [43] H. Ye et al. Reconfigurable refraction manipulation at synthetic temporal interfaces with scalar and vector gauge potentials. Proc. Natl. Acad. Sci. U. S. A., 120, e2300860120(2023).

    [44] H. Ye et al. Observation of generalized dynamic localizations in arbitrary-wave driven synthetic temporal lattices. Laser Photonics Rev., 17, 2200505(2023).

    [45] F. Cardano et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun., 8, 15516(2017).

    [46] X. W. Luo et al. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun., 8, 16097(2017).

    [47] L. Yuan et al. Synthetic dimension in photonics. Optica, 5, 1396-1405(2018).

    [48] Y. Song et al. Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys. Rev. Appl., 14, 064076(2020).

    [49] K. Fang et al. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett., 108, 153901(2012).

    [50] Q. Lin et al. Light guiding by effective gauge field for photons. Phys. Rev. X, 4, 031031(2014).

    Xinyuan Hu, Shulin Wang, Chengzhi Qin, Chenyu Liu, Lange Zhao, Yinglan Li, Han Ye, Weiwei Liu, Stefano Longhi, Peixiang Lu, Bing Wang, "Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices," Adv. Photon. 6, 046001 (2024)
    Download Citation