• Acta Photonica Sinica
  • Vol. 48, Issue 11, 1148011 (2019)
L Shi-chao*, ZHOU Shi-feng, TANG Jun-zhou, and LIU Pei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20194811.1148011 Cite this Article
    L Shi-chao, ZHOU Shi-feng, TANG Jun-zhou, LIU Pei. Research Progress in Development of Glass Scintillator[J]. Acta Photonica Sinica, 2019, 48(11): 1148011 Copy Citation Text show less
    References

    [1] NIKL M. Scintillation detectors for x-rays[J].Measurement Science and Technology, 2006, 17(4): R37-R54.

    [2] MARVIN J. WEBER. Inorganic scintillators: today and tomorrow[J]. Journal of Luminescence, 2002, 100: 35-45.

    [3] MOSES WW. Current trends in scintillator detectors and materials[J]. Nuclear Instruments and Methods in Physics Research Section A, 2002, 487(1): 123-128.

    [4] CHEREPY N. Transparent ceramicscintillators for gamma-ray spectroscopy and radiography[C]. SPIE, 2010, 7805: 78050I.

    [5] LTANT S E, WANG T F. Semiconductor quantum dot scintillation under γ-Ray irradiation[J]. Nano Letters, 2006, 6(12): 2877-2880.

    [6] MANICKARAJ K, WAGNER B K, KANG Zhi-tao. Radiation detection with CdTe quantum dots in sol-gel glass and polymer nanocomposites[C]. SPIE, 2013, 8725: 87252L.

    [7] HUBBELL J H, SELTZER S M. X-Raymass attenuation coefficients[J/OL].[2019-09-09]. https: //www.nist.gov/pml/x-ray-mass-attenuation-coefficients.

    [8] KIRK S E, MARTIN S W. Preparation andcharacterization of high-density PbO-Bi2O3-B2O3 glasses[J]. Journal of the American Ceramic Society, 1992, 75(4): 1028-1031.

    [9] JIANG Chun, ZENG Qing-ji, GAN Fu-xi. Scintillation properties of cerium-doped germanate glass[C]. SPIE, 2000, 4141: 309-315.

    [10] JIANG Chun, ZENG Qing-ji, GAN Fu-xi. New scintillator: cerium-doped dense oxide glass[C]. SPIE, 2000, 4134: 329-335.

    [11] JIANG Chun, ZENG Qing-ji, GAN Fu-xi. Scintillating luminescence of cerium-doped dense oxide glass[C]. SPIE, 1999,3768: 462-469.

    [12] NOVOTNY R W, BRINKMANN K T, BORISEVICH A,et al. Study of the new glass and glass ceramic stoichiometric and Gd3+-loaded BaO-2SiO2 (DSB: Ce) scintillation material for future calorimetry[J]. Journal of Physics: Conference Series, 2017, 928: 12034.

    [13] ZOU Wan-cheng, MARTIN S W, SCHWELLENBACH D, et al. New high-density fluoride glasses doped with CeF3[J]. Journal of Non-Crystalline Solids, 1995, 184: 84-92.

    [14] SUN Xin-yuan, YANG Qing-mei, XIE Peng, et al. Effects of substitution of BaF2 for GdF3 on optical properties of dense oxyfluoride borogermanate scintillating glasses[J]. Journal of Rare Earths, 2015, 33(8): 800-804.

    [15] MUGONI C, GATTO C, PLA-DALMAU A,et al. Structure and luminescence properties of Dy2O3 doped bismuth-borate glasses[J]. Journal of Non-Crystalline Solids, 2017, 471: 295-300.

    [16] FU Jie, KOBAYASHI M, PARKER J M. Terbium-activated heavy scintillating glasses[J]. Journal of Luminescence, 2008, 128(1): 99-104.

    [17] QIAN Shan, HUANG Li-hui, ZHAO Shi-long, et al. Luminescent properties of Tb3+ doped high density borogermanate scintillating glasses[J]. Journal of Rare Earths, 2017, 35(8): 787-790.

    [18] JIANG Chun, DENG Pei-zhen, ZHANG Jun-zhou, et al. Radio luminescence of Ce3+-doped B2O3-SiO2-Gd2O3-BaO glass[J]. Physics Letters A, 2004, 323(3-4): 323-328.

    [19] STRUEBING C, LEE G, WAGNER B,et al. Synthesis and luminescence properties of Tb doped LaBGeO5 and GdBGeO5 glass scintillators[J]. Journal of Alloys and Compounds, 2016, 686: 9-14.

    [20] SUN Xin-yuan, XIAO Zhuo-hao, WU Yun-tao, et al. Fast Ce3+-activated borosilicate glass scintillators prepared in air atmosphere[J]. Ceramics International, 2017, 43(3): 3401-3404.

    [21] CHEWPRADITKUL W, HE X, CHEN D,et al. Luminescence and scintillation of Ce3+-doped oxide glass with high Gd2O3 concentration[J]. Physica Status Solidi (A), 2011, 208(12): 2830-2832.

    [22] KIRDSIRI K, KAEWKHAO J, PARK J M, et al. Scintillation and luminescence properties of Sm3+-activated Lu2O3-CaO-SiO2-B2O3 (LuCSB) scintillating glasses[J]. Journal of the Korean Physical Society, 2016, 69(6): 1094-1097.

    [23] BRABSON B B, CRITTENDEN R R, DZIERBA A R, et al. A study of two prototype lead glass electromagnetic calorimeters[J]. Nuclear Instruments and Methods in Physics Research Section A, 1993, 332(3): 419-443.

    [24] ZHU Yong-chang, OUYANG Shi-xi, GAO Si-jian, et al. Luminescence characteristics of Ce3+ doped Ca-Al-Ba glass[J]. Journal of Wuhan University of Technology, 2009, 24(5): 815-818.

    [25] SHAUKAT S F, MCKINLAY K J, FLOWER P S,et al. Optical and physical characteristics of HBLAN fluoride glasses containing cerium[J]. Journal of Non-Crystalline Solids, 1999, 244(2): 197-204.

    [26] DAFINEI I, AUFFRAY E, LECOQ P, et al. Heavy fluoride glasses as an alternative to crystals in high energy physics calorimetry[J]. MRS Online Proceedings Library Archive, 1994: 348.

    [27] AUFFRAY E, BOUTTET D, DAFINEI I,et al. Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry[J]. Nuclear Instruments and Methods in Physics Research Section A, 1996, 380(3): 524-536.

    [28] STRUEBING C, BECKERT M B, NADLER J H,et al. Optimization of a gadolinium-rich oxyhalide glass scintillator for gamma ray spectroscopy[J]. Journal of the American Ceramic Society, 2018, 101(3): 1116-1121.

    [29] CHEN Yan-ping, LUO De-li. Progress in 6Li glass scintillation materials for neutron detection[J]. Journal of Inorganic Materials, 2012,27(11): 1121-1128.

    [30] FIRK F W K, SLAUGHTER G G, GINTHER R J. An improved 6Li-loaded glass scintillator for neutron detection[J]. Nuclear Instruments and Methods, 1961, 13: 313-316.

    [31] TYRRELL G C. Phosphorsand scintillators in radiation imaging detectors[J]. Nuclear Instruments and Methods in Physics Research Section A, 2005, 546(1-2): 180-187.

    [32] KOHEI Y, TAKAHIRO M, TAKAYUKI Y,et al. SiO2/SiN multilayer-stack infrared absorber integrated on Pb(Zr0.4,Ti0.6)O3 film pyroelectric sensors on gamma-Al2O3/Si substrate[J]. Sensors and Materials, 2015: 217-227.

    [33] ARIKAWA Y, YAMANOI K, NAKAZATO T, et al. Custom-designed scintillator for laser fusion diagnostics – Pr3+-doped fluoro-phosphate lithium glass scintillator[J]. Optical Materials, 2010, 32(10): 1393-1396.

    [34] ARIKAWA Y, YAMANOI K, NAKAZATO T,et al. Pr3+-doped fluoro-oxide lithium glass as scintillator for nuclear fusion diagnostics[J]. Review of Scientific Instruments, 2009, 80(11): 113504.

    [35] MURATA T, FUJINO S, YOSHIDA H,et al. Custom-designed fast-response praseodymium-doped lithium 6 fluoro-oxide glass scintillator with enhanced cross-section for scattered neutron originated from inertial confinement fusion[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1426-1429.

    [36] MURATA T, FUJINO S, YOSHIDA H,et al. Optical properties and structure of Pr3+-doped Al(PO3)3 -LiF glasses as scattered neutron scintillator for nuclear fusion diagnostics[J]. IOP Conference Series: Materials Science and Engineering, 2011, 18(11): 112006.

    [37] FUKABORI A, YANAGIDA T, CHANI V,et al. Optical and scintillation properties of Pr-doped Li-glass for neutron detection in inertial confinement fusion process[J]. Journal of Non-Crystalline Solids, 2011, 357(3): 910-914.

    [38] YANAGIDA T, MASAI H, FUJIMOTO Y,et al. Study of rare-earth free Sn2+ doped glass scintillator[C]. IEEE Nuclear Science Symposium and Medical Imaging Conference, 2013: 1-3.

    [39] CAO Jiang-kun, CHEN Wei-ping, CHEN Li-ping,et al. Synthesis and characterization of BaLuF5: Tb3+ oxyfluoride glass ceramics as nanocomposite scintillator for X-ray imaging[J]. Ceramics International, 2016, 42(15): 17834-17838.

    [40] CAO Jiang-kun, WANG Xiu-yao, LI Xiao-man, et al. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing KLu2F7 nano-crystals[J]. Journal of Luminescence, 2016, 170: 207-211.

    [41] CAO Jiang-kun, CHEN Li-ping, CHEN Wei-ping,et al. Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals[J]. Optical Materials Express, 2016, 6(7): 2201-2206.

    [42] CAO Jiang-kun, CHEN Wei-ping,XU Deng-ke, et al. Transparent glass ceramics containing Lu6O5F8: Tb3+ nano-crystals: Enhanced photoluminescence and X-ray excited luminescence[J]. Journal of the American Ceramic Society, 2018, 101(4): 1585-1591.

    [43] CHEN Wei-ping, CAO Jiang-kun, HU Fang-fang, et al. Highly efficient Na5Gd9F32: Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging[J]. Optical Materials Express, 2018, 8(1): 41.

    [44] SUN Xin-yuan, GU Mu, HUANG Shi-ming, et al. Luminescence behavior of Tb3+ ions in transparent glass and glass-ceramics containing CaF2 nanocrystals[J]. Journal of Luminescence, 2009, 129(8): 773-777.

    [45] LEE G, STRUEBING C, WAGNER B,et al. Synthesis and characterization of a BaGdF5: Tb glass ceramic as a nanocomposite scintillator for X-ray imaging[J]. Nanotechnology. 2016, 27(20): 205203.

    [46] LEE G, SAVAGE N, WAGNER B,et al. Synthesis and luminescence properties of transparent nanocrystalline GdF3: Tb glass-ceramic scintillator[J]. Journal of Luminescence, 2014, 147: 363-366.

    [47] SCHWEIZER S, JOHNSON J A.Fluorozirconate-based glass ceramic X-ray detectors for digital radiography[J]. Radiation Measurements, 2007, 42(4-5): 632-637.

    [48] LIU Pei, LV Shi-chao, CHEN Xiao-pu, et al. Crystallization control toward colorless Ce3+-doped scintillating glass[J]. Optics Express, 2018, 26(16), 20582-20589.

    [49] BARTA M B, NADLER J H, KANG Z, et al. Composition optimization of scintillating rare-earth nanocrystals in oxide glass–ceramics for radiation spectroscopy[J]. Applied Optics, 2014, 53(16): D21-D28.

    [50] NIKITIN A, FEDOROV A, KORJIK M. Novel glass ceramicscintillator for detection of slow neutrons in well logging applications[J]. IEEE Transactions on Nuclear Science, 2013, 60(2): 1044-1048.

    [51] LV Shi-chao, CAO Mao-qing, LI Chao-yu, et al. In-situ phase transition control in the supercooled state for robust active glass fiber[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20664-20670.

    [52] FU J, KOBAYASHI M, SUGIMOTO S,et al. Scintillation from Eu2+ in nanocrystallized glass[J]. Journal of the American Ceramic Society, 2009, 92(9): 2119-2121.

    [53] STRUEBING C, CHONG J, LEE G,et al. A neutron scintillator based on transparent nanocrystalline CaF2: Eu glass ceramic[J]. Applied Physics Letters, 2016, 108(15): 153106.

    [54] HAN C, BARTA M, DORN M,et al. Transparent oxyhalide glass and glass ceramics for gamma-ray detection[C]. SPIE, 2011, 8142: 81420R.

    [55] HUANG Li-hui, JIA Shi-jie, LI Yang, et al. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals[J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 788: 111-115.

    [56] ALVAREZ C J, LEONARD R L, GRAY S K,et al. Structural and kinetic analysis of BaCl2 nanocrystals in fluorochlorozirconate glass-ceramics[J]. Journal of the American Ceramic Society, 2015, 98(4): 1099-1104.

    [57] OKADA G, EDGAR A, KASAP S,et al. Radioluminescence properties of Sm-doped fluorochlorozirconate glasses and glass-ceramics[J]. Japanese Journal of Applied Physics, 2016, 55(2S): 2B-7B.

    [58] Corning.Scintillating fiber[EB/OL].[2019-09-09]. https: //www.crystals.saint-gobain.com/products/scintillating-fiber.

    [59] ZHANG Yong. Research on preparation and luminous performance of rare earth ions doped scintillation glass and scintillation optical fiber panel[D]. Changchun: Changchun University of Science and Technology, 2016.

    [60] GUO Qiang, SUN Xin-xin, LUO Wen-yun, et al. Scintillation and photoluminescence property of SiO2 cladding YAP: Ce optical fiber via modified rod-in-tube method[J]. Optical Materials Express, 2017, 7(5): 1525-1534.

    CLP Journals

    [1] Yunfeng BAI, Linxiang WANG, Qing LI, [in Chinese]. Alkali Metal Ion, Gd3+, Ce3+ Co-doped Lu3Al5O12 Optical Properties of Ceramic Powder[J]. Acta Photonica Sinica, 2021, 50(4): 163

    L Shi-chao, ZHOU Shi-feng, TANG Jun-zhou, LIU Pei. Research Progress in Development of Glass Scintillator[J]. Acta Photonica Sinica, 2019, 48(11): 1148011
    Download Citation