• Chinese Journal of Lasers
  • Vol. 49, Issue 14, 1402105 (2022)
Yizhen Zhao, Hang Zhang, Jianglong Cai*, Xiaoyu Sun, Jiale Geng, Lin Wang, Xuebo Xu, and Dichen Li**
Author Affiliations
  • School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • show less
    DOI: 10.3788/CJL202249.1402105 Cite this Article Set citation alerts
    Yizhen Zhao, Hang Zhang, Jianglong Cai, Xiaoyu Sun, Jiale Geng, Lin Wang, Xuebo Xu, Dichen Li. Microstructure and Properties of BCC-Based Refractory High-Entropy Alloy by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2022, 49(14): 1402105 Copy Citation Text show less
    References

    [1] Yeh J W, Chen S K, Lin S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).

    [2] Senkov O N, Wilks G B, Miracle D B et al. Refractory high-entropy alloys[J]. Intermetallics, 18, 1758-1765(2010).

    [3] Senkov O N, Wilks G B, Scott J M et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 19, 698-706(2011).

    [4] Senkov O N, Woodward C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Materials Science and Engineering: A, 529, 311-320(2011).

    [5] Senkov O N, Scott J M, Senkova S V et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. Journal of Materials Science, 47, 4062-4074(2012).

    [6] Senkov O N, Senkova S V, Miracle D B et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science and Engineering: A, 565, 51-62(2013).

    [7] Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia, 68, 214-228(2014).

    [8] Juan C C, Tsai M H, Tsai C W et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining[J]. Materials Letters, 184, 200-203(2016).

    [9] Huang L F, Sun Y N, Ji Y Q et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entropy alloy[J]. Chinese Journal of Lasers, 48, 0602107(2021).

    [10] Xiang S, Zhang L, Liu X et al. Effect of laser melting deposition process on microstructure and mechanical properties of CrMnFeCoNi high-entropy alloys[J]. Transactions of Materials and Heat Treatment, 39, 29-35(2018).

    [11] Abdukadir A, Xiang S, Le G M et al. Microstructure and low temperature mechanical properties of CrMnFeCoNi high-entropy alloys deposited by laser melting[J]. Transactions of Materials and Heat Treatment, 41, 70-75(2020).

    [12] Zhang H, Zhao Y Z, Cai J L et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design, 201, 109462(2021).

    [13] Li Q Y, Zhang H, Li D C et al. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy[J]. International Journal of Refractory Metals and Hard Materials, 88, 105195(2020).

    Yizhen Zhao, Hang Zhang, Jianglong Cai, Xiaoyu Sun, Jiale Geng, Lin Wang, Xuebo Xu, Dichen Li. Microstructure and Properties of BCC-Based Refractory High-Entropy Alloy by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2022, 49(14): 1402105
    Download Citation