• Chinese Journal of Lasers
  • Vol. 48, Issue 4, 0401005 (2021)
Jiajian Zhu*, Minggang Wan, Ge Wu, Bo Yan, Yifu Tian, Rong Feng, and Mingbo Sun
Author Affiliations
  • Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/CJL202148.0401005 Cite this Article Set citation alerts
    Jiajian Zhu, Minggang Wan, Ge Wu, Bo Yan, Yifu Tian, Rong Feng, Mingbo Sun. Research Progress of Laser-Induced Fluorescence Technology in Combustion Diagnostics[J]. Chinese Journal of Lasers, 2021, 48(4): 0401005 Copy Citation Text show less
    References

    [1] Ju Y G, Sun W T. Plasma assisted combustion: dynamics and chemistry[J]. Progress in Energy and Combustion Science, 48, 21-83(2015). http://www.sciencedirect.com/science/article/pii/S0360128514000781

    [2] Feng R, Zhu J J, Wang Z G et al. Dynamic characteristics of a gliding arc plasma-assisted ignition in a cavity-based scramjet combustor[J]. Acta Astronautica, 171, 238-244(2020). http://www.sciencedirect.com/science/article/pii/S0094576520301338

    [3] Sun M B, Wang H B, Cai Z et al. Unsteady supersonic combustion[M]. Singapore: Springer Singapore(2020).

    [4] Bai X, Cheng P, Li Q L et al. Effects of self-pulsation on combustion instability in a liquid rocket engine[J]. Experimental Thermal and Fluid Science, 114, 110038(2020). http://www.sciencedirect.com/science/article/pii/S0894177719314086

    [5] Urbano A, Selle L, Staffelbach G et al. Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine[J]. Combustion and Flame, 169, 129-140(2016). http://www.sciencedirect.com/science/article/pii/S0010218016300372

    [6] Stamatis A, Mathioudakis K, Papailiou K D. Adaptive simulation of gas turbine performance[J]. Journal of Engineering for Gas Turbines & Power, 112, 168-175(1990). http://www.researchgate.net/publication/245352358_Adaptive_simulation_of_gas_turbine_performance

    [7] Valera-Medina A, Marsh R, Runyon J et al. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation[J]. Applied Energy, 185, 1362-1371(2017). http://www.sciencedirect.com/science/article/pii/S0306261916302100

    [8] Malé Q, Staffelbach G, Vermorel O et al. Large eddy simulation of pre-chamber ignition in an internal combustion engine[J]. Flow, Turbulence and Combustion, 103, 465-483(2019). http://link.springer.com/article/10.1007/s10494-019-00026-y

    [9] Wu J, Chen L H, Zhou J W et al. Effects of fuel types on soot evolution in diffusion flames[J]. Chinese Journal of Lasers, 46, 0411001(2019).

    [10] Wang Z G, Yang Y X, Liang J H et al. Analysis and modeling of blowout limits of cavity flame in supersonic flows[J]. Scientia Sinica: Technologica, 44, 961-972(2014).

    [11] Yang Y X, Wang Z G, Sun M B et al. Empirical mixing model of transverse gaseous jet in supersonic flow[J]. Journal of Aerospace Power, 30, 1391-1399(2015).

    [12] Zhang Y X, Wang Z G, Sun M B et al. An investigation on one-dimensional model of heat release distribution in scramjet combustor[J]. Journal of Propulsion Technology, 36, 1852-1858(2015).

    [13] Wu J S, Wang Z G, Bai X S et al. The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model[J]. Acta Astronautica, 127, 375-383(2016). http://www.sciencedirect.com/science/article/pii/S0094576516301655

    [14] Li P B, Wang Z G, Bai X S et al. Three-dimensional flow structures and droplet-gas mixing process of a liquid jet in supersonic crossflow[J]. Aerospace Science and Technology, 90, 140-156(2019). http://www.sciencedirect.com/science/article/pii/S1270963818328293

    [15] Hu Z Y, Liu J R, Zhang Z R et al. The research progress of laser combustion diagnostics techniques and applications[J]. Engineering Sciences, 11, 45-50(2009).

    [16] Yang B, He G Q, Liu P J et al. TDLAS-based measurements of parameters for incoming flow hot-firing test of air-breathing rocket engine[J]. Chinese Journal of Lasers, 38, 0508006(2011).

    [17] Liu X C, Li Y Y, Zhou Z Y et al. Applications of laser spectroscopy and mass spectrometry in combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 30, 43-54, 67(2016).

    [18] Ehn A, Zhu J J, Li X S et al. Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering[J]. Applied Spectroscopy, 71, 341-366(2017).

    [19] Zhang B Q, Xu Z Y, Liu J G et al. Absorption model of wavelength modulation spectroscopy in combustion flow field[J]. Chinese Journal of Lasers, 46, 0711001(2019).

    [20] Peng Y Q, Kan R F, Xu Z Y et al. Measurement of CO concentration in combustion field based on mid-infrared absorption spectroscopy[J]. Chinese Journal of Lasers, 45, 0911010(2018).

    [21] Kan R F, Xia H H, Xu Z Y et al. Research and progress of flow field diagnosis based on laser absorption spectroscopy[J]. Chinese Journal of Lasers, 45, 0911005(2018).

    [22] Aldén M, Bood J, Li Z S et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 33, 69-97(2011). http://www.sciencedirect.com/science/article/pii/S1540748910003883

    [23] Kychakoff G, Howe R D, Hanson R K et al. Quantitative visualization of combustion species in a plane[J]. Applied Optics, 21, 3225-3227(1982). http://www.ncbi.nlm.nih.gov/pubmed/20396209

    [24] Zhang J F, Chen L H, Yu J H et al. Detection of polycyclic aromatic hydrocarbons in diffusion flame of propane by laser induced fluorescence[J]. Chinese Journal of Lasers, 47, 0411002(2020).

    [25] Zhou B, Brackmann C, Li Z S et al. Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime[J]. Proceedings of the Combustion Institute, 35, 1409-1416(2015). http://www.sciencedirect.com/science/article/pii/S154074891400265X

    [26] Gao J L, Kong C D, Zhu J J et al. Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 37, 5629-5636(2019). http://www.sciencedirect.com/science/article/pii/S154074891830213X

    [27] Lü L, Tan J G, Zhu J J. Visualization of the heat release zone of highly turbulent premixed jet flames[J]. Acta Astronautica, 139, 258-265(2017). http://www.sciencedirect.com/science/article/pii/S0094576517306951

    [28] Li X P, Liu W D, Pan Y et al. Characterization of kerosene distribution around the ignition cavity in a scramjet combustor[J]. Acta Astronautica, 134, 11-16(2017). http://www.sciencedirect.com/science/article/pii/S0094576517300188

    [29] Li X P, Liu W D, Yang L C et al. Experimental investigation on fuel distribution in a scramjet combustor with dual cavity[J]. Journal of Propulsion and Power, 34, 552-556(2017). http://arc.aiaa.org/doi/abs/10.2514/1.B36749

    [30] Peng J B, Cao Z, Yu X et al. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decomposition[J]. International Journal of Hydrogen Energy, 45, 13108-13118(2020). http://www.sciencedirect.com/science/article/pii/S0360319920308673

    [31] Wu G, Li Y, Wan M G et al. Visualization of flame structure in supersonic combustion by planar laser induced fluorescence technique[J]. Journal of Experiments in Fluid Mechanics, 34, 70-77(2020).

    [32] Zhu J J, Zhao G Y, Long T H et al. Simultaneous OH and CH2O PLIF imaging of flame structures[J]. Journal of Experiments in Fluid Mechanics, 30, 55-60, 87(2016).

    [33] Chen S, Kapsta L, Weng W B et al. Simultaneous multi-species PLIF diagnostic on CH4-air inverse diffusion jet flame[J]. Journal of Experiments in Fluid Mechanics, 32, 26-32(2018).

    [34] Yan H, Zhang S H, Yu X L et al. Flame structure and dynamics characters investigation by OH and CH2O planar laser-induced fluorescence in the swirl combustor[J]. Journal of Aerospace Power, 34, 894-907(2019).

    [35] Vena P C, Deschamps B, Guo H S et al. Heat release rate variations in a globally stoichiometric, stratified iso-octane/air turbulent V-flame[J]. Combustion and Flame, 162, 944-959(2015). http://www.sciencedirect.com/science/article/pii/S0010218014003009

    [36] Chen S, Su T, Li Z S et al. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy[J]. Chinese Physics B, 25, 100701(2016).

    [37] Medwell P R, Chan Q N. Kalt P A M, et al. Development of temperature imaging using two-line atomic fluorescence[J]. Applied Optics, 48, 1237-1248(2009).

    [38] Zhang Z R, Huang M S, Hu Z Y et al. Measurement of CH4/AIR flame parameters by combination of laser induced polarization spectroscopy and laser induced fluorescence techniques[J]. High Power Laser and Particle Beams, 25, 2821-2825(2013).

    [39] Borggren J, Burns I S, Sahlberg A L et al. Temperature imaging in low-pressure flames using diode laser two-line atomic fluorescence employing a novel indium seeding technique[J]. Applied Physics B, 122, 1-8(2016). http://link.springer.com/article/10.1007/s00340-016-6329-8

    [40] Ye J F, Shi D Y, Song W Y et al. Investigation of turbulence flow characteristics in a dual-mode scramjet combustor using hydroxyl tagging velocimetry[J]. Acta Astronautica, 157, 276-281(2019). http://www.sciencedirect.com/science/article/pii/S0094576518313973

    [41] Miller J D, Peltier S J, Slipchenko M N et al. Investigation of transient ignition processes in a model scramjet pilot cavity using simultaneous 100 kHz formaldehyde planar laser-induced fluorescence and CH * chemiluminescence imaging[J]. Proceedings of the Combustion Institute, 36, 2865-2872(2017). http://www.sciencedirect.com/science/article/pii/s1540748916303182

    [42] Li X D, Mei F, Yan R P et al. Review of burst-mode lasers for high-speed PLIF imaging diagnostics[J]. Optics and Precision Engineering, 27, 2116-2126(2019).

    [43] Ma L, Lei Q C, Ikeda J et al. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute, 36, 4575-4583(2017). http://www.sciencedirect.com/science/article/pii/s154074891630308x

    [44] Halls B R, Gord J R, Hsu P S et al. Development of two-color 3D tomographic VLIF measurements. [C]∥2018 AIAA Aerospace Sciences Meeting, January 8-12, 2018, Kissimmee, Florida. Reston, Virginia: AIAA(2018).

    [45] Chterev I, Rock N, Ek H et al. Simultaneous high speed (5 kHz) fuel-PLIE, OH-PLIF and stereo PIV imaging of pressurized swirl-stabilized flames using liquid fuels. [C]∥55th AIAA Aerospace Sciences Meeting, January 9-13, 2017, Grapevine, Texas. Reston, Virginia: AIAA(2017).

    [46] Fugger C A, Yi T, Sykes J et al. The structure and dynamics of a bluff-body stabilized premixed reacting flow. [C]∥2018 AIAA Aerospace Sciences Meeting, January 8-12, 2018, Kissimmee, Florida. Reston, Virginia: AIAA(2018).

    [47] Eckbreth A C. Laser diagnostics for combustion temperature and species[M]. ∥Culick F, Heitor M V, Whitelaw J H, et al. Unsteady Combustion. NATO ASI Series (Series E: Applied Sciences). Dordrecht: Springer, 306, 393-410(1996).

    [48] Borggren J. Two-line atomic fluorescence for thermometry in reactive flows Lund,[D]. Sweden: Lund University(2018).

    [49] Kaminski C F, Hult J, Aldén M. High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame[J]. Applied Physics B, 68, 757-760(1999). http://link.springer.com/article/10.1007/s003400050700

    [50] Bergthorson J M, Goodwin D G, Dimotakis P E. Particle streak velocimetry and CH laser-induced fluorescence diagnostics in strained, premixed, methane-air flames[J]. Proceedings of the Combustion Institute, 30, 1637-1644(2005). http://www.zhangqiaokeyan.com/academic-conference-foreign_international-symposium-combustion-20040725-30-chicago-il_thesis/020511897612.html

    [51] Tanahashi M, Murakami S, Choi G M et al. Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames[J]. Proceedings of the Combustion Institute, 30, 1665-1672(2005). http://www.zhangqiaokeyan.com/academic-conference-foreign_international-symposium-combustion-20040725-30-chicago-il_thesis/020511897549.html

    [52] Li Z S, Kiefer J, Zetterberg J et al. Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames[J]. Proceedings of the Combustion Institute, 31, 727-735(2007). http://www.sciencedirect.com/science/article/pii/S1540748906002781

    [53] Carter C D, Hammack S D, Lee T. High-speed planar laser-induced fluorescence of the CH radical using the C2Σ +-X2Π(0,0) band[J]. Applied Physics B Photophysics and Laser Chemistry, 116, 515-519(2014).

    [54] Li Z S, Li B, Sun Z W et al. Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame[J]. Combustion and Flame, 157, 1087-1096(2010). http://www.sciencedirect.com/science/article/pii/S0010218010000714

    [55] Harrington J E, Smyth K C. Laser-induced fluorescence measurements of formaldehyde in a methane/air diffusion flame[J]. Chemical Physics Letters, 202, 196-202(1993). http://www.sciencedirect.com/science/article/pii/000926149385265P

    [56] Zhou B, Kiefer J, Zetterberg J et al. Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames[J]. Combustion and Flame, 161, 1566-1574(2014). http://www.sciencedirect.com/science/article/pii/S001021801300432X

    [57] Zhou B, Brackmann C, Li Z S et al. Development and application of CN PLIF for single-shot imaging in turbulent flames[J]. Combustion and Flame, 162, 368-374(2015). http://www.sciencedirect.com/science/article/pii/S0010218014002156

    [58] Lee T, Jeffries J B, Hanson R K. Experimental evaluation of strategies for quantitative laser-induced-fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar)[J]. Proceedings of the Combustion Institute, 31, 757-764(2007). http://www.sciencedirect.com/science/article/pii/S154074890600054X

    [59] Kulatilaka W D, Patterson B D, Frank J H et al. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames[J]. Applied Optics, 47, 4672-4683(2008). http://www.opticsinfobase.org/abstract.cfm?uri=ao-47-26-4672

    [60] Frank J H, Chen X L, Patterson B D et al. Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames[J]. Applied Optics, 43, 2588-2597(2004).

    [61] Zhou B, Brackmann C, Wang Z K et al. Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations[J]. Combustion and Flame, 175, 220-236(2017). http://www.sciencedirect.com/science/article/pii/S0010218016301444

    [62] Wang J H, Yu Q Q, Zhang W J et al. Development of a turbulence scale controllable burner and turbulent flame structure analysis[J]. Experimental Thermal and Fluid Science, 109, 109898(2019). http://www.sciencedirect.com/science/article/pii/S0894177718314936

    [63] Li B, Zhang D Y, Yao M F et al. Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence[J]. Proceedings of the Combustion Institute, 36, 4487-4495(2017). http://www.sciencedirect.com/science/article/pii/S1540748916303406

    [64] Carter C D, Hammack S, Lee T. High-speed flamefront imaging in premixed turbulent flames using planar laser-induced fluorescence of the CH C-X band[J]. Combustion and Flame, 168, 66-74(2016). http://www.sciencedirect.com/science/article/pii/S0010218016300414

    [65] Li B, Li X F, Yao M F et al. Methyl radical imaging in methane-air flames using laser photofragmentation-induced fluorescence[J]. Applied Spectroscopy, 69, 1152-1156(2015). http://europepmc.org/abstract/MED/26449808

    [66] Wang H B, Wang Z G, Sun M B et al. Combustion characteristics in a supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Proceedings of the Combustion Institute, 34, 2073-2082(2013).

    [67] Gamba M, Mungal M G. Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow[J]. Journal of Fluid Mechanics, 780, 226-273(2015). http://meetings.aps.org/link/BAPS.2010.DFD.MR.9

    [68] Cantu L M L, Gallo E C A, Cutler A D et al. OH PLIF visualization of a premixed ethylene-fueled dual-mode scramjet combustor. [C]∥54th AIAA Aerospace Sciences Meeting, January 4-8, 2016, San Diego, California, USA. Reston, Virginia: AIAA(2016).

    [69] Geipel C M, Rockwell R D, Chelliah H K et al. High-spatial-resolution OH PLIF visualization in a cavity-stabilized ethylene-air turbulent flame. [C]∥33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, June 5-9, 2017, Denver, Colorado, USA. Reston, Virginia: AIAA(2017).

    [70] Geipel C M, Cutler A D, Rockwell R D et al. Characterization of flame front structure in a dual-mode scramjet combustor with OH-PLIF. [C]∥AIAA Scitech 2019 Forum, January 7-11, 2019, San Diego, California. Reston, Virginia: AIAA(2019).

    [71] Liu Q L, Baccarella D, Landsberg W et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute, 37, 3733-3740(2019). http://www.sciencedirect.com/science/article/pii/S1540748918305790

    [72] Tian Y, Zeng X J, Yang S H et al[J]. injector position on flow structure, flame development in the scramjet combustor. Aerospace Science, Technology, 82/83, 9-19(2018).

    [73] Halls B R, Gord J R, Meyer T R et al. 20 kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet[J]. Proceedings of the Combustion Institute, 36, 4611-4618(2017). http://www.sciencedirect.com/science/article/pii/S1540748916302632

    [74] Wu Y, Xu W J, Ma L. Kilohertz VLIF (volumetric laser induced fluorescence) measurements in a seeded free gas-phase jet in the transitionally turbulent flow regime[J]. Optics and Lasers in Engineering, 102, 52-58(2018). http://www.sciencedirect.com/science/article/pii/S0143816617303275

    [75] Micka D, Driscoll J. Reaction zone imaging in a dual-mode scramjet combustor using CH-PLIF. [C]∥44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 21-23, 2008, Hartford, CT. Reston, Virginia: AIAA(2008).

    [76] Micka D J, Driscoll J F. Stratified jet flames in a heated (1390 K) air cross-flow with autoignition[J]. Combustion and Flame, 159, 1205-1214(2012). http://www.sciencedirect.com/science/article/pii/S001021801100318X

    [77] Liang J H, Li Y, Sun M B et al. CH-PLIF imaging of flame heat-release structures in supersonic combustion[J]. Journal of National University of Defense Technology, 41, 27-33(2019).

    [78] Rasmussen C C, Dhanuka S K, Driscoll J F. Visualization of flameholding mechanisms in a supersonic combustor using PLIF[J]. Proceedings of the Combustion Institute, 31, 2505-2512(2007). http://www.sciencedirect.com/science/article/pii/S1540748906002707

    [79] Allison P, Frederickson K, Kirik J W et al. Investigation of flame structure and combustion dynamics using CH2O PLIF and high-speed CH * chemiluminescence in a premixed dual-mode scramjet combustor. [C]∥54th AIAA Aerospace Sciences Meeting, January 4-8, 2016, San Diego, California, USA. Reston, Virginia: AIAA(2016).

    [80] Gabet K N, Sutton J A. Narrowband versus broadband excitation for CH2O PLIF imaging in flames using a frequency-tripled Nd∶YAG laser[J]. Experiments in Fluids, 55, 1-11(2014).

    [81] Paul P H, Najm H N. Planar laser-induced fluorescence imaging of flame heat release rate[J]. Symposium (International) on Combustion, 27, 43-50(1998). http://www.sciencedirect.com/science/article/pii/S0082078498803883

    [82] Wang J H, Zhang M, Huang Z H et al. Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure[J]. Combustion and Flame, 160, 2434-2441(2013).

    [83] Zhang W J, Wang J H, Lin W J et al. Effect of differential diffusion on turbulent lean premixed hydrogen enriched flames through structure analysis[J]. International Journal of Hydrogen Energy, 45, 10920-10931(2020). http://www.sciencedirect.com/science/article/pii/S0360319920305139

    [84] Zhang M, Wang J H, Xie Y L et al. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames[J]. Experimental Thermal and Fluid Science, 52, 288-296(2014). http://www.sciencedirect.com/science/article/pii/s0894177713002331

    [85] Wu Y, Modica V, Yu X L et al. Effects of optical diagnostic techniques on the accuracy of laminar flame speeds measured from Bunsen flames: OH * chemiluminescence, OH-PLIF and acetone/kerosene-PLIF[J]. Measurement Science and Technology, 29, 015204(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=cf5e4d1f9412e837d02bc0c5fe121659

    [86] Skiba A W, Wabel T M, Carter C D et al. Premixed flames subjected to extreme levels of turbulence part I: flame structure and a new measured regime diagram[J]. Combustion and Flame, 189, 407-432(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=48163568f851951875492487262e69cc

    [87] Bogdanoff D W. Advanced injection and mixing techniques for scramjet combustors[J]. Journal of Propulsion and Power, 10, 183-190(1994). http://arc.aiaa.org/doi/abs/10.2514/3.23728

    [88] Liu J, Gen H, Zhai Z et al. Experimental investigation of transverse Jet in supersonic crossflow by acetone planar laser induced fluorescence. C]∥1st Modern Aerodynamics & Aerothermodynamics Conference: Proceedings of 1st Modern Aerodynamics & Aerothermodynamics Conference. Shanghai: Chinese Society of Aerodynamics, 582-587(2006).

    [89] Zhou M. Research on measurements of air mixing ratio using acetone planar laser induced fluorescence[D]. Harbin: Harbin Institute of Technology(2015).

    [90] Severin M, Lammel O, Ax H et al. High momentum jet flames at elevated pressure: detailed investigation of flame stabilization with simultaneous particle Iimage velocimetry and OH-LIF[J]. Journal of Engineering for Gas Turbines and Power, 140, 041508(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=74f00271106133f34f94284870b08ae2

    [91] Hartwig J, Mittal G, Sung C J. Acetone tracer laser-induced fluorescence (LIF) at 282 nm excitation as a diagnostic tool in elevated pressure and temperature systems[J]. Applied Spectroscopy, 73, 395-402(2019). http://www.ncbi.nlm.nih.gov/pubmed/30777449

    [92] Jenkins T P, Hess C F, Allison S W et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology, 31, 044003(2020). http://iopscience.iop.org/article/10.1088/1361-6501/ab4c20

    [93] Wang M R, Xiao Y, Han B et al. Temperature field test for aeroengine combustor with five nozzles based on gas analysis[J]. Journal of Aerospace Power, 31, 2049-2054(2016).

    [94] Ezenwajiaku C, Talibi M. Doan N A K, et al. Study of polycyclic aromatic hydrocarbons (PAHs) in hydrogen-enriched methane diffusion flames[J]. International Journal of Hydrogen Energy, 44, 7642-7655(2019). http://www.sciencedirect.com/science/article/pii/S0360319919304379

    [95] Johchi A, Pareja J, Böhm B et al. Quantitative mixture fraction imaging of a synthetic biogas turbulent jet propagating into a NO-vitiated air co-flow using planar laser-induced fluorescence (PLIF)[J]. Experiments in Fluids, 60, 1-13(2019). http://link.springer.com/article/10.1007/s00348-019-2723-4

    [96] Lozano A, Yip B, Hanson R K. Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence[J]. Experiments in Fluids, 13, 369-376(1992).

    [97] Thurber M C, Grisch F, Kirby B J et al. Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics[J]. Applied Optics, 37, 4963-4978(1998). http://www.opticsinfobase.org/abstract.cfm?uri=ao-37-21-4963

    [98] Thurber M C, Hanson R K. Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm[J]. Applied Physics B, 69, 229-240(1999). http://link.springer.com/article/10.1007/s003400050799

    [99] Rothamer D A, Snyder J A, Hanson R K et al. Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines[J]. Applied Physics B, 99, 371-384(2010). http://link.springer.com/article/10.1007/s00340-009-3815-2

    [100] Miller V, Gamba M, Mungal G et al. Toluene PLIF thermometry in supersonic flows. [C]∥42nd AIAA Fluid Dynamics Conference and Exhibit, June 25-28, 2012, New Orleans, Louisiana. Reston, Virginia: AIAA(2012).

    [101] Schulz C, Sick V. Tracer-LIF diagnostics:quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems[J]. Progress in Energy and Combustion Science, 31, 75-121(2005). http://www.sciencedirect.com/science/article/pii/S0360128504000619

    [102] Devillers R, Bruneaux G, Schulz C. Investigation of toluene LIF at high pressure and high temperature in an optical engine[J]. Applied Physics B, 96, 735-739(2009). http://link.springer.com/article/10.1007%2Fs00340-009-3563-3

    [103] Faust S, Tea G, Dreier T et al. Temperature, pressure, and bath gas composition dependence of fluorescence spectra and fluorescence lifetimes of toluene and naphthalene[J]. Applied Physics B, 110, 81-93(2013). http://link.springer.com/article/10.1007/s00340-012-5254-8

    [104] Thering H, Beckmann L, Jördens C et al. Formaldehyde laser-induced fluorescence imaging with a multi-band transmission filter[J]. Optics Letters, 39, 1873-1876(2014).

    [105] Kashitani M, Yamaguchi Y, Handa T et al. Study on laser-induced acetone fluorescence in low-temperature gases of nitrogen and air. [C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 9-12, 2012, Nashville, Tennessee. Reston, Virginia: AIAA(2012).

    [106] Sun M B, Geng H, Liang J H et al. Mixing characteristics of gaseous fuel injection upstream of a flameholding cavity in supersonic flow[J]. Journal of Propulsion Technology, 29, 306-311(2008).

    [107] Sun M B, Geng H, Liang J H et al. Mixing characteristics in a supersonic combustor with gaseous fuel injection upstream of a cavity flameholder[J]. Flow, Turbulence and Combustion, 82, 271-286(2009). http://link.springer.com/10.1007/s10494-008-9178-7

    [108] Yang L C, Peng J B, Li X H et al. Planar laser-induced fluorescence imaging of kerosene injection in supersonic flow[J]. Journal of Visualization, 22, 751-760(2019). http://dl.acm.org/doi/10.1007/s12650-019-00563-8

    [109] Etheridge S, Lee J G, Carter C et al. Effect of flow distortion on fuel/air mixing and combustion in an upstream-fueled cavity flameholder for a supersonic combustor[J]. Experimental Thermal and Fluid Science, 88, 461-471(2017). http://www.sciencedirect.com/science/article/pii/S0894177717301863

    [110] Cantu L M L. Visualization and analysis of a hydrocarbon premixed flame a in small scale scramjet combustor[D]. Washington: The George Washington University(2016).

    [111] Chun J. Experimental investigations of injection, mixing, and reaction processes in supersonic flow applications Stuttgart,[D]. Gemany: University of Stuttgart(2009).

    [112] Shi H, Tang Q L, An Y Z et al. Study of spray/wall interaction in transition zones from HCCI via PPC to CI combustion modes[J]. Fuel, 268, 117341(2020). http://www.sciencedirect.com/science/article/pii/S0016236120303367

    [113] Salazar V M, Kaiser S A, Halter F. Optimizing precision and accuracy of quantitative PLIF of acetone as a tracer for hydrogen fuel[J]. SAE International Journal of Fuels and Lubricants, 2, 737-761(2009). http://www.researchgate.net/publication/279156802_Optimizing_Precision_and_Accuracy_of_Quantitative_PLIF_of_Acetone_as_a_Tracer_for_Hydrogen_Fuel

    [114] Ji Y B, Yuan Y W, Ge B et al. 31(1): 48-[J]. dilution characteristics of a RQL, rich-quench-lean, combustor in its quenching zone in an aeroengine. Journal of Engineering for Thermal Energy, Power, 53, 131-132(2016).

    [115] Yu Y. Experimental study and numerical simulation of gas flameless combustion induced by the inner structure[D]. Hefei: University of Science and Technology of China(2010).

    [116] Dec J E, Canaan R E[2020-06-15]. PLIF imaging of NO formation in a DI diesel engine [2020-06-15].https:∥www.researchgate.net/publication/300690588_PLIF_Imaging_of_NO_Formation_in_a_DI_Diesel_Engine..

    [117] Mulla I A, Godard G, Cabot G et al. Quantitative imaging of nitric oxide concentration in a turbulent n-heptane spray flame[J]. Combustion and Flame, 203, 217-229(2019). http://www.sciencedirect.com/science/article/pii/S001021801930063X

    [118] Williams B, Ewart P, Wang X W et al. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: effects of residual exhaust gas on quantitative PLIF[J]. Combustion and Flame, 157, 1866-1878(2010). http://www.sciencedirect.com/science/article/pii/S0010218010001707

    [119] Marrero-Santiago J, Verdier A, Brunet C et al. Experimental study of aeronautical ignition in a swirled confined jet-spray burner[J]. Journal of Engineering for Gas Turbines and Power, 140, 021502(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=0bdfdd93f1ef1c936c0429911499a703

    [120] Lind S, Trost J, Zigan L et al. Application of the tracer combination TEA/acetone for multi-parameter laser-induced fluorescence measurements in IC engines with exhaust gas recirculation[J]. Proceedings of the Combustion Institute, 35, 3783-3791(2015). http://www.sciencedirect.com/science/article/pii/S1540748914003022

    [121] Boggavarapu P, Ravikrishna R V. Quantitative vapour concentration measurements in n-dodecane and n-hexadecane sprays[J]. Experimental Thermal and Fluid Science, 102, 397-405(2019). http://www.sciencedirect.com/science/article/pii/S0894177718313189

    [122] Zhao W. Visualization research on gas injection characteristics of engine based on PLIF[D]. Harbin: Harbin Engineering University(2018).

    [123] Ma X, He X, Qi Y L et al. In-cylinder mixture distribution of direct injection LPG using laser-induced fluorescence[J]. Transactions of CSICE, 27, 481-486(2009).

    [124] Ma X, He X, Wang J X et al. In-cylinder mixture distribution measurement in a GDI engine using laser-induced fluorescence[J]. Chinese Internal Combustion Engine Engineering, 31, 1-5, 10(2010).

    [125] Miller V A, Gamba M, Mungal M G et al. Single- and dual-band collection toluene PLIF thermometry in supersonic flows[J]. Experiments in Fluids, 54, 1-13(2013). http://link.springer.com/article/10.1007/s00348-013-1539-x

    [126] Gamba M, Miller V A, Mungal M G et al. Temperature and number density measurement in non-uniform supersonic flowfields undergoing mixing using toluene PLIF thermometry[J]. Applied Physics B, 120, 285-304(2015). http://link.springer.com/10.1007/s00340-015-6136-7

    [127] Snyder J A. Development and application of tracer-based planar laser-induced fluorescence imaging diagnostics for HCCI engines Stanford, California,[D]. USA: Stanford University(2011).

    [128] Willman C, Stone R, Davy M et al. Cycle-to-cycle variation analysis of two-colour PLIF temperature measurements calibrated with laser induced grating spectroscopy in a firing GDI engine[J]. SAE International Journal of Advances and Current Practices in Mobility, 1, 1404-1419(2019). http://www.researchgate.net/publication/332156498_Cycle-to-Cycle_Variation_Analysis_of_Two-Colour_PLIF_Temperature_Measurements_Calibrated_with_Laser_Induced_Grating_Spectroscopy_in_a_Firing_GDI_Engine

    [129] Dronniou N, Dec J E. Investigating the development of thermal stratification from the near-wall regions to the bulk-gas in an HCCI engine with planar imaging thermometry[J]. SAE International Journal of Engines, 5, 1046-1074(2012). http://www.researchgate.net/publication/277622297_Investigating_the_Development_of_Thermal_Stratification_from_the_Near-Wall_Regions_to_the_Bulk-Gas_in_an_HCCI_Engine_with_Planar_Imaging_Thermometry

    [130] Zhang W L, Fu X Q, He B Q. PLIF-based temperature and concentration measurement of in-cylinder mixture and its application[J]. Journal of Safety Science and Technology, 10, 61-66(2014).

    [131] Yan B, Chen L, Chen S et al. Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference[J]. Acta Physica Sinica, 68, 218701(2019).

    [132] Yan B, Su T, Chen S et al. Structured illumination for Rayleigh scattering imaging to eliminate the stray light interference[J]. Journal of Experiments in Fluid Mechanics, 34, 33-37, 48(2020).

    [133] Yan B, Chen L, Li M et al. Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering[J]. Chinese Physics B, 29, 024701(2020). http://cpb.iphy.ac.cn/CN/abstract/abstract75379.shtml

    [134] Saiki Y, Kurimoto N, Suzuki Y et al. Active control of jet premixed flames in a model combustor with manipulation of large-scale vortical structures and mixing[J]. Combustion and Flame, 158, 1391-1403(2011). http://www.sciencedirect.com/science/article/pii/S0010218010003433

    [135] Joklik R G, Daily J W. Two-line atomic fluorescence temperature measurement in flames:an experimental study[J]. Applied Optics, 21, 4158-4162(1982).

    [136] Daily J W. Laser induced fluorescence spectroscopy in flames[J]. Progress in Energy and Combustion Science, 23, 133-199(1997). http://pubs.acs.org/doi/abs/10.1021/bk-1980-0134.ch003

    [137] Fang B L, Hu Z Y, Zhang Z R et al. Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames[J]. Proceedings of SPIE, 1017, 1017312(2017). http://www.researchgate.net/publication/316900578_Mechanism_of_laser_induced_fluorescence_signal_generation_in_InCl_3_-ethanol_mixture_flames

    [138] Chan Q N, Medwell P R. Kalt P A M, et al. Simultaneous imaging of temperature and soot volume fraction[J]. Proceedings of the Combustion Institute, 33, 791-798(2011).

    [139] Chan Q N, Medwell P R, Dally B B et al. New seeding methodology for gas concentration measurements[J]. Applied Spectroscopy, 66, 803-809(2012).

    [140] Münsterjohann B. Huber F J T, Klima T C, et al. Potential of two-line atomic fluorescence for temperature imaging in turbulent indium-oxide-producing flames[J]. Journal of Nanoparticle Research, 17, 1-10(2015).

    [141] Whiddon R, Zhou B, Borggren J et al. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry[J]. The Review of Scientific Instruments, 86, 093107(2015). http://europepmc.org/abstract/MED/26429429

    [142] Dec J E, Keller J O. High speed thermometry using two-line atomic fluorescence[J]. Symposium (International) on Combustion, 21, 1737-1745(1988). http://www.sciencedirect.com/science/article/pii/S0082078488804077

    [143] Burns I S, Mercier X, Wartel M et al. A method for performing high accuracy temperature measurements in low-pressure sooting flames using two-line atomic fluorescence[J]. Proceedings of the Combustion Institute, 33, 799-806(2011). http://www.sciencedirect.com/science/article/pii/S154074891000146X

    [144] Löfström C, Engström J, Richter M et al. Feasibility studies and application of laser /optical diagnostics for characterisation of a practical low-emission gas turbine combustor. [C]∥Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air, May 8-11, 2000, Munich, Germany. New York: ASME, 1-8(2000).

    [145] Medwell P R, Chan Q N, Kalt P A et al. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence[J]. Applied Spectroscopy, 64, 173-176(2010). http://europepmc.org/abstract/MED/20149278

    [146] Chan Q N, Medwell P R, Alwahabi Z T et al. Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames[J]. Applied Physics B, 104, 189-198(2011). http://link.springer.com/article/10.1007/s00340-011-4497-0

    [147] Gu D H, Sun Z W, Nathan G J et al. Improvement of precision and accuracy of temperature imaging in sooting flames using two-line atomic fluorescence (TLAF)[J]. Combustion and Flame, 167, 481-493(2016). http://www.sciencedirect.com/science/article/pii/S0010218015003417

    [148] Manteghi A A. Probing gases and flames by coherent rayleigh brillouin scattering and two lines atomic fluorescence Eindhoven,[D]. Netherlands: Eindhoven University of Technology(2013).

    [149] Foo K K, Sun Z W, Medwell P R et al. Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames[J]. Combustion and Flame, 181, 270-282(2017). http://www.sciencedirect.com/science/article/pii/S0010218017301281

    [150] Sun Z W, Alwahabi Z, Dally B et al. Simultaneously calibrated two-line atomic fluorescence for high-precision temperature imaging in sooting flames[J]. Proceedings of the Combustion Institute, 37, 1417-1425(2019). http://www.sciencedirect.com/science/article/pii/S1540748918303109

    [151] Fang B L, Hu Z Y, Tao B et al. New calibration method for nonlinear two-line atomic fluorescence[J]. Acta Optica Sinica, 37, 1112001(2017).

    [152] Fang B L, Zhang Z R, Li G H et al. Simple calibrated nonlinear excitation regime two-line atomic fluorescence thermometry[J]. Optics Letters, 44, 227-230(2019). http://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-2-227

    [153] Sijtsema N M, Dam N J. Klein-Douwel R J H, et al. Air photolysis and recombination tracking: a new molecular tagging velocimetry scheme[J]. AIAA Journal, 40, 1061-1064(2002).

    [154] Bearden W C, Hall C A, Pitz R W. Examination of NO tag formation for unseeded molecular tagging velocimetry. [C]∥55th AIAA Aerospace Sciences Meeting, January 9-13, 2017, Grapevine, Texas. Reston, Virginia: AIAA(2017).

    [155] ElBaz A M, Pitz R W. N2O molecular tagging velocimetry[J]. Applied Physics B, 106, 961-969(2012).

    [156] Orlemann C, Schulz C, Wolfrum J. NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures[J]. Chemical Physics Letters, 307, 15-20(1999). http://www.sciencedirect.com/science/article/pii/S0009261499005126

    [157] Bathel B, Danehy P, Jones S et al. Trip-induced transition measurements in a hypersonic boundary layer using molecular tagging velocimetry. [C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 7-10, 2013, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virginia: AIAA(2013).

    [158] Parziale N J, Smith M S, Marineau E C. Krypton tagging velocimetry of an underexpanded jet[J]. Applied Optics, 54, 5094-5101(2015). http://dx.doi.org/10.1364/ao.54.005094

    [159] Mustafa M A, Parziale N J, Smith M S et al. Nonintrusive freestream velocity measurement in a large-scale hypersonic wind tunnel[J]. AIAA Journal, 55, 3611-3616(2017). http://arc.aiaa.org/doi/abs/10.2514/1.J056177

    [160] Pitz R W, Wehrmeyer J A, Ribarov L A et al. Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry[J]. Measurement Science and Technology, 11, 1259-1271(2000). http://adsabs.harvard.edu/abs/2000MeScT..11.1259P

    [161] Ribarov L A, Hu S T, Wehrmeyer J A et al. Hydroxyl tagging velocimetry method optimization: signal intensity and spectroscopy[J]. Applied Optics, 44, 6616-6626(2005).

    [162] Hall C A, Ramsey M C, Knaus D A et al. Molecular tagging velocimetry in nitrogen with trace water vapor[J]. Measurement Science and Technology, 28, 085201(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=754854c4622f1f8635cf1147c1273e42

    [163] Dam N. Klein-Douwel R J, Sijtsema N M, et al. Nitric oxide flow tagging in unseeded air[J]. Optics Letters, 26, 36-38(2001).

    [164] Laan W P N, Tolboom R A L, Dam N J et al. Molecular tagging velocimetry in the wake of an object in supersonic flow[J]. Experiments in Fluids, 34, 531-534(2003). http://link.springer.com/article/10.1007/s00348-003-0593-1

    [165] Bathel B, Johansen C, Danehy P et al. Hypersonic boundary layer transition measurements using N O2->NO photo-dissociation tagging velocimetry. [C]∥41st AIAA Fluid Dynamics Conference and Exhibit, June 27-30, 2011, Honolulu, Hawaii. Reston, Virginia: AIAA(2011).

    [166] Bathel B, Danehy P, Johansen C et al. Hypersonic boundary layer measurements with variable blowing rates using molecular tagging velocimetry. [C]∥28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference, June 25-28, 2012, New Orleans, Louisiana Reston, Virginia: AIAA(2012).

    [167] Kidd F G, Narayanaswamy V, Danehy P M et al. Characterization of the NASA langley arc heated scramjet test facility using NO PLIF. [C]∥30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, June 16-20, 2014, Atlanta, GA. Reston, Virginia: AIAA(2014).

    [168] Sánchez-González R. Bowersox R D W, North S W. Simultaneous velocity and temperature measurements in gaseous flowfields using the vibrationally excited nitric oxide monitoring technique: a comprehensive study[J]. Applied Optics, 51, 1216-1228(2012).

    [169] Sánchez-González R, Bowersox R D, North S W. Vibrationally excited NO tagging by NO(A2Σ +) fluorescence and quenching for simultaneous velocimetry and thermometry in gaseous flows[J]. Optics Letters, 39, 2771-2774(2014).

    [170] Dai S T, Jiang T, Wu H C et al. Tunable narrow-linewidth 226 nm laser for hypersonic flow velocimetry[J]. Optics Letters, 45, 2291-2294(2020). http://www.researchgate.net/publication/340048147_A_new_tunable_narrow-linewidth_226nm_laser_for_hypersonic_flow_velocimetry

    [171] Parziale N J, Smith M, Marineau E C. Krypton tagging velocimetry for use in high-speed ground-test facilities. [C]∥53rd AIAA Aerospace Sciences Meeting, January 5-9, 2015, Kissimmee, Florida. Reston, Virginia: AIAA(2015).

    [172] Zahradka D, Parziale N J, Smith M S et al. Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer[J]. Experiments in Fluids, 57, 1-14(2016). http://link.springer.com/article/10.1007%2fs00348-016-2148-2

    [173] Mustafa M A, Parziale N J. Simplified read schemes for krypton tagging velocimetry in N2 and air[J]. Optics Letters, 43, 2909-2912(2018). http://europepmc.org/abstract/MED/29905721

    [174] Mustafa M A, Parziale N J, Marineau E C et al. Two-dimensional krypton tagging velocimetry (KTV-2D) investigation of shock-wave/turbulent boundary-layer interaction. [C]∥2018 AIAA Aerospace Sciences Meeting,January 8-12, 2018, Kissimmee, Florida. Reston, Virginia: AIAA(2018).

    [175] Mustafa M A, Parziale N J, Smith M S et al. Amplification and structure of streamwise-velocity fluctuations in compression-corner shock-wave/turbulent boundary-layer interactions[J]. Journal of Fluid Mechanics, 863, 1091-1122(2019). http://www.researchgate.net/publication/330764463_Amplification_and_structure_of_streamwise-velocity_fluctuations_in_compression-corner_shock-waveturbulent_boundary-layer_interactions

    [176] Mustafa M A, Shekhtman D, Parziale N J. Single-laser krypton tagging velocimetry (KTV) investigation of air and N2 boundary-layer flows over a hollow cylinder in the stevens shock tube. [C]∥AIAA Scitech 2019 Forum, January 7-11, 2019, San Diego, California. Reston, Virginia: AIAA(2019).

    [177] Ribarov L A, Wehrmeyer J A, Pitz R W et al. Hydroxyl tagging velocimetry (HTV) in experimental air flows[J]. Applied Physics B, 74, 175-183(2002). http://link.springer.com/10.1007/s003400100777

    [178] Grady N, Pitz R W. Vibrationally excited hydroxyl tagging velocimetry[J]. Applied Optics, 53, 7182-7188(2014).

    [179] Ramsey M C, Pitz R W, Jenkins T P et al. Planar 2D velocity measurements in the cap shock pattern of a thrust optimized rocket nozzle[J]. Shock Waves, 22, 39-46(2012).

    [180] Lahr M D, Pitz R W, Douglas Z W et al. Hydroxyl-tagging-velocimetry measurements of a supersonic flow over a cavity[J]. Journal of Propulsion and Power, 26, 790-797(2010). http://arc.aiaa.org/doi/abs/10.2514/1.47264

    [181] Grady N R, Pitz R W, Carter C D et al. Supersonic flow over a ramped-wall cavity flame holder with an upstream strut[J]. Journal of Propulsion and Power, 28, 982-990(2012).

    [182] Pitz R, Lahr M, Douglas Z et al. Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity. [C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit, January 10-13, 2005, Reno, Nevada. Reston, Virginia: AIAA(2005).

    [183] Ramsey M C, Pitz R W. Template matching for improved accuracy in molecular tagging velocimetry[J]. Experiments in Fluids, 51, 811-819(2011). http://link.springer.com/article/10.1007/s00348-011-1098-y/email/correspondent/c1/new

    [184] Shao J, Ye J F, Hu Z Y et al. Method to improve signal extraction capability of hydroxyl tagging velocimetry in supersonic combustion flow field[J]. Acta Photonica Sinica, 48, 0912007(2019).

    [185] Shao J, Fang B L, Ye J F et al. Method to improve the velocimetry measurement accuracy of hydroxyl tagging velocimetry in complex combustion flow field[J]. Acta Photonica Sinica, 48, 0412001(2019).

    [186] Shao J, Ye J F, Wang S et al. Background noise suppress method for hydroxyl tagging velocimetry in combustion flow field[J]. Chinese Journal of Lasers, 46, 0309001(2019).

    [187] Hu Z Y, Ye J F, Zhang Z R et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 32, 33-42(2018).

    [188] Pan F, Sánchez-González R. McIlvoy M H, et al. Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique[J]. Optics Letters, 41, 1376-1379(2016).

    [189] Hammack S D, Lee T, Hsu K Y et al. High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder[J]. Journal of Propulsion and Power, 29, 1248-1251(2013). http://arc.aiaa.org/doi/abs/10.2514/1.B34756

    [190] Jiang N B, Webster M C, Lempert W R. Advances in generation of high-repetition-rate burst mode laser output[J]. Applied Optics, 48, B23-B31(2009). http://www.ncbi.nlm.nih.gov/pubmed/19183578

    [191] Peng J B, Cao Z, Yu X et al. Continuous 500-Hz OH-PLIF measurements in a hydrogen-fueled scramjet combustor[J]. Frontiers in Physics, 8, 101(2020). http://www.researchgate.net/publication/340976815_Continuous_500-Hz_OH-PLIF_Measurements_in_a_Hydrogen-Fueled_Scramjet_Combustor

    [192] Yang X Y, Fu C, Wang G Q et al. Simultaneous high-speed SO2 PLIF imaging and stereo-PIV measurements in premixed swirling flame at 20 kHz[J]. Applied Optics, 58, C121-C129(2019). http://www.researchgate.net/publication/332134549_Simultaneous_high-speed_SO_2_PLIF_imaging_and_stereo-PIV_measurements_in_premixed_swirling_flame_at_20_kHz

    [193] Wang S R, Liu X C, Wang G Q et al. High-repetition-rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation[J]. Applied Optics, 58, C68-C78(2019). http://www.ncbi.nlm.nih.gov/pubmed/31045033

    [194] Wellander R, Richter M, Aldén M. Time-resolved (kHz) 3D imaging of OH PLIF in a flame[J]. Experiments in Fluids, 55, 1-12(2014). http://link.springer.com/10.1007/s00348-014-1764-y

    [195] Xu W J, Carter C D, Hammack S et al. Analysis of 3D combustion measurements using CH-based tomographic VLIF (volumetric laser induced fluorescence)[J]. Combustion and Flame, 182, 179-189(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=5ca5287f6f9f9b4677dfd43753886560

    [196] Halls B R, Hsu P S, Ethan L et al. 3D OH LIF measurements in a lifted flame. [C]∥55th AIAA Aerospace Sciences Meeting, January 9-13, 2017, Grapevine, Texas. Reston, Virginia: AIAA(2017).

    [197] Liu N, Ma L. 3D flame measurements using tomography reconstruction integrating view registration. [C]∥AIAA Scitech 2020 Forum, January 6-10, 2020, Orlando, FL, USA. Reston, Virginia: AIAA(2020).

    [198] Ma L, Lei Q C, Wu Y et al. From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz[J]. Combustion and Flame, 165, 1-10(2016). http://www.sciencedirect.com/science/article/pii/S0010218015003004

    [199] Shimura M, Ueda T, Choi G M et al. Simultaneous dual-plane CH PLIF, single-plane OH PLIF and dual-plane stereoscopic PIV measurements in methane-air turbulent premixed flames[J]. Proceedings of the Combustion Institute, 33, 775-782(2011). http://www.sciencedirect.com/science/article/pii/S1540748910000775

    [200] Boxx I, Slabaugh C, Kutne P et al. 3 kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure[J]. Proceedings of the Combustion Institute, 35, 3793-3802(2015). http://www.researchgate.net/publication/312170861_3_kHz_PIVOH-PLIF_measurements_in_a_gas_turbine_combustor_at_elevated_pressure

    [201] Fuest F, Barlow R S, Chen J Y et al. Raman/Rayleigh scattering and CO-LIF measurements in laminar and turbulent jet flames of dimethyl ether[J]. Combustion and Flame, 159, 2533-2562(2012). http://www.sciencedirect.com/science/article/pii/S0010218011003488

    [202] Jeong C, Bae J, Kim T et al. Investigation of flashback characteristics coupled with combustion instability in turbulent premixed bluff body flames using high-speed OH-PLIF and PIV[J]. Proceedings of the Combustion Institute, 36, 1861-1868(2017). http://www.sciencedirect.com/science/article/pii/S1540748916304667

    [203] Fugger C A, Roy S, Caswell A W et al. Structure and dynamics of CH2O, OH, and the velocity field of a confined bluff-body premixed flame, using simultaneous PLIF and PIV at 10 kHz[J]. Proceedings of the Combustion Institute, 37, 1461-1469(2019). http://www.researchgate.net/publication/327873783_Structure_and_dynamics_of_CH2O_OH_and_the_velocity_field_of_a_confined_bluff-body_premixed_flame_using_simultaneous_PLIF_and_PIV_at_10_kHz

    [204] Skiba A W, Carter C D, Hammack S D et al. The influence of large eddies on the structure ofturbulent premixed flames characterized with stereo-PIV and multi-species PLIF at 20 kHz[J]. Proceedings of the Combustion Institute, 37, 2477-2484(2019). http://www.sciencedirect.com/science/article/pii/S1540748918305406

    [205] Weinkauff J, Trunk P, Frank J H et al. Investigation of flame propagation in a partially premixed jet by high-speed-stereo-PIV and acetone-PLIF[J]. Proceedings of the Combustion Institute, 35, 3773-3781(2015). http://www.sciencedirect.com/science/article/pii/S154074891400025X

    [206] Hammack S D, Skiba A W, Lee T et al. CH PLIF and PIV implementation using C-X (0, 0) and intra-vibrational band filtered detection[J]. Applied Physics B, 124, 1-5(2018). http://link.springer.com/10.1007/s00340-017-6883-8

    [207] Mitsingas C M, Hammack S D, Mayhew E K et al. Simultaneous high speed PIV and CH PLIF using R-branch excitation in the C2Σ +-X2Π (0, 0) band[J]. Proceedings of the Combustion Institute, 37, 1479-1487(2019).

    [208] Gao Y, Yang X Y, Fu C et al. 10 kHz simultaneous PIV/PLIF study of the diffusion flame response to periodic acoustic forcing[J]. Applied Optics, 58, C112-C120(2019). http://www.ncbi.nlm.nih.gov/pubmed/31045081

    [209] Guo S L, Wang J H, Zhang W J et al. Effect of hydrogen enrichment on swirl/bluff-body lean premixed flame stabilization[J]. International Journal of Hydrogen Energy, 45, 10906-10919(2020). http://www.sciencedirect.com/science/article/pii/S0360319920305012

    [210] Guo S L, Wang J H, Zhang W J et al. Investigation on bluff-body and swirl stabilized flames near lean blowoff with PIV/PLIF measurements and LES modelling[J]. Applied Thermal Engineering, 160, 114021(2019). http://www.sciencedirect.com/science/article/pii/S135943111930729X

    [211] Fan X J, Liu C X, Xu G et al. Experimental investigations of the spray structure and interactions between sectors of a double-swirl low-emission combustor[J]. Chinese Journal of Aeronautics, 33, 589-597(2020). http://www.cqvip.com/QK/83889X/20202/00002GOK49507JP0MPDO7JP167R.html

    [212] Chterev I, Rock N, Ek H et al. Simultaneous imaging of fuel, OH, and three component velocity fields in high pressure, liquid fueled, swirl stabilized flames at 5 kHz[J]. Combustion and Flame, 186, 150-165(2017). http://www.sciencedirect.com/science/article/pii/S0010218017302663

    [213] Skiba A W, Carter C D, Hammack S D et al. A simplified approach to simultaneous multi-scalar imaging in turbulent flames[J]. Combustion and Flame, 189, 207-211(2018). http://www.sciencedirect.com/science/article/pii/S0010218017304327

    [214] Kong C D, Li Z S, Aldén M et al. Stabilization of a turbulent premixed flame by a plasma filament[J]. Combustion and Flame, 208, 79-85(2019). http://www.sciencedirect.com/science/article/pii/S0010218019302949

    [215] Novoselov A G, Reuter C B, Yehia O R et al. Turbulent nonpremixed cool flames: experimental measurements, direct numerical simulation, and manifold-based combustion modeling[J]. Combustion and Flame, 209, 144-154(2019). http://www.sciencedirect.com/science/article/pii/S001021801930344X

    [216] Ge B, Ji Y B, Zhang Z L et al. Experiment study on the combustion performance of hydrogen-enriched natural gas in a DLE burner[J]. International Journal of Hydrogen Energy, 44, 14023-14031(2019). http://www.sciencedirect.com/science/article/pii/S0360319919313448

    [217] Do H, Im S K, Cappelli M A et al. Plasma assisted flame ignition of supersonic flows over a flat wall[J]. Combustion and Flame, 157, 2298-2305(2010). http://www.sciencedirect.com/science/article/pii/S001021801000194X

    [218] Jain A, Wang Y J, Kulatilaka W D. Effect of H-atom concentration on soot formation in premixed ethylene/air flames[J]. Proceedings of the Combustion Institute, 37, 1289-1296(2019). http://www.sciencedirect.com/science/article/pii/S154074891830511X

    [219] Guiberti T F, Boyette W R, Krishna Y et al. Assessment of the stabilization mechanisms of turbulent lifted jet flames at elevated pressure using combined 2-D diagnostics[J]. Combustion and Flame, 214, 323-335(2020). http://www.sciencedirect.com/science/article/pii/S0010218020300031

    [220] Liu Y Z, He Y, Wang Z H et al. Multi-point LIBS measurement and kinetics modeling of sodium release from a burning Zhundong coal particle[J]. Combustion and Flame, 189, 77-86(2018). http://www.sciencedirect.com/science/article/pii/S0010218017304236

    [221] Park O, Burns R A, Clemens N T. Relationship between soot and scalar dissipation rate in the soot-inception region of turbulent non-premixed jet flames[J]. Proceedings of the Combustion Institute, 37, 1057-1064(2019). http://www.sciencedirect.com/science/article/pii/S1540748918303572

    [222] Köser J, Li T, Vorobiev N et al. Multi-parameter diagnostics for high-resolutionin situ measurements of single coal particle combustion[J]. Proceedings of the Combustion Institute, 37, 2893-2900(2019). http://www.sciencedirect.com/science/article/pii/S1540748918301172

    [223] Balusamy S, Kamal M M, Lowe S M et al. Laser diagnostics of pulverized coal combustion in O2/N2 and O2/CO2 conditions: velocity and scalar field measurements[J]. Experiments in Fluids, 56, 1-16(2015). http://link.springer.com/article/10.1007%2Fs00348-015-1965-z

    [224] Wang Y H, Song W Y, Shi D Y. Experimental study of flame stabilization in a kerosene fueled scramjet combustor[J]. Acta Astronautica, 157, 282-293(2019). http://www.sciencedirect.com/science/article/pii/S0094576518314243

    [225] Malbois P, Salaün E, Vandel A et al. Experimental investigation of aerodynamics and structure of a swirl-stabilized kerosene spray flame with laser diagnostics[J]. Combustion and Flame, 205, 109-122(2019). http://www.sciencedirect.com/science/article/pii/S0010218019301439

    Jiajian Zhu, Minggang Wan, Ge Wu, Bo Yan, Yifu Tian, Rong Feng, Mingbo Sun. Research Progress of Laser-Induced Fluorescence Technology in Combustion Diagnostics[J]. Chinese Journal of Lasers, 2021, 48(4): 0401005
    Download Citation