• Optoelectronics Letters
  • Vol. 18, Issue 4, 222 (2022)
Nanxian OU1, Wei LI2, Runzhou QIU1, Bin ZHANG3, Shecheng GAO1, and Weiping LIU1
Author Affiliations
  • 1Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
  • 2Fiberhome Telecommunication Technologies Co., Ltd., Wuhan 430074, China
  • 3Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.1007/s11801-022-2032-7 Cite this Article
    OU Nanxian, LI Wei, QIU Runzhou, ZHANG Bin, GAO Shecheng, LIU Weiping. Amplification of high-order azimuthal mode based on a ring-core Yb-doped fiber[J]. Optoelectronics Letters, 2022, 18(4): 222 Copy Citation Text show less
    References

    [1] RUBINSZTEIN-DUNLOP H, FORBES A, BERRY M V, et al. Roadmap on structured light[J]. Journal of optics, 2016, 19(1):013001.

    [2] VALENCIA N H, SRIVASTAV V, LEEDUMRONGWATTHANAKUN S, et al. Entangled ripples and twists of light:radial and azimuthal Laguerre-Gaussian mode entanglement[J]. Journal of optics, 2021, 23(10): 104001.

    [3] YAN L, KRISTENSEN P, RAMACHANDRAN S. Vortex fibers for STED microscopy[J]. APL photonics, 2019, 4(2):022903.

    [4] TOYODA K, MIYAMOTO K, AOKI N, et al. Using optical vortex to control the chirality of twisted metal nanostructures[J]. Nano letters, 2012, 12(7):3645-3649.

    [5] OUYANG X, XU Y, XIAN M, et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature photonics, 2021, 15(12):901-907.

    [6] XIAN M, XU Y, OUYANG X, et al. Segmented cylindrical vector beams for massively-encoded optical data storage[J]. Science bulletin, 2020, 65(24):2072-2079.

    [7] LI G, BAI N, ZHAO N, et al. Space-division multiplexing :the next frontier in optical communication[J]. Advances in optics and photonics, 2014, 6(4):413-487.

    [8] ALARCON A, ARGILLANDER J, LIMA G, et al. Few-mode-fiber technology fine-tunes losses in quantum communication systems[J]. Physical review applied, 2021, 16(3):034018.

    [9] ZHANG H, BIGOT-ASTRUC M, BIGOT L, et al. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber[J]. Optics express, 2019, 27(11):15413-15425.

    [10] VELáZQUEZ-BENíTEZ A M, GUERRA-SANTILLáN K Y, CAUDILLO-VIURQUEZ R, et al. Optical trapping and micromanipulation with a photonic lantern-mode multiplexer[J]. Optics letters, 2018, 43(6): 1303-1306.

    [11] CHEN S, HUANG H, ZOU H, et al. Optical manipulation of biological particles using LP21 mode in fiber[J]. Journal of optics, 2014, 16(12):125302.

    [12] HUANG Y, SHI F, WANG T, et al. High-order mode Yb-doped fiber lasers based on mode-selective couplers[J]. Optics express, 2018, 26(15):19171-19181.

    [13] WANG T, WU J, WU H, et al. Wavelength-tunable LP11 mode pulse fiber laser based on black phosphorus[J]. Optics & laser technology, 2019, 119:105618.

    [14] LIU T, CHEN S P, HOU J. Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair[J]. Optics letters, 2016, 41(24): 5692-5695.

    [15] LIU X, CHRISTENSEN E N, ROTTWITT K, et al. Nonlinear four-wave mixing with enhanced diversity and selectivity via spin and orbital angular momentum conservation[J]. APL photonics, 2020, 5(1):010802.

    [16] LABRUYERE A, MARTIN A, LEPROUX P, et al. Controlling intermodal four-wave mixing from the design of microstructured optical fibers[J]. Optics express, 2008, 16(26):21997-22002.

    [17] ZHANG Y, ZHOU Y, TANG X, et al. Mode division multiplexing for multiple particles noncontact simultaneous trap[J]. Optics letters, 2021, 46(13):3017-3020.

    [18] PASCHOTTA R, NILSSON J, TROPPER A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE journal of quantum electronics, 1997, 33(7):1049-1056.

    [19] KIM D J, KIM J W, CLARKSON W A. High-power master-oscillator power-amplifier with optical vortex output[J]. Applied physics B, 2014, 117(1):459-464.

    [20] LIN D, CARPENTER J, FENG Y, et al. High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier[J]. Photonics research, 2021, 9(5):856-864.

    [21] LI H, ZHANG Y, DONG Z, et al. A high-efficiency all-fiber laser operated in high-order mode using ring-core Yb-doped fiber[J]. Annalen der physik, 2019, 531(10):1900079.

    [22] FANG W T, TAO R X, ZHANG Y M, et al. Adaptive modal gain controlling for a high-efficiency cylindrical vector beam fiber laser[J]. Optics express, 2019, 27(22):32649-32658.

    [23] LV J, LI H, ZHANG Y, et al. Tailoring the spectrum and spatial mode of Yb-doped random fiber laser[J]. Optics express, 2022, 30(5):8345-8355.

    OU Nanxian, LI Wei, QIU Runzhou, ZHANG Bin, GAO Shecheng, LIU Weiping. Amplification of high-order azimuthal mode based on a ring-core Yb-doped fiber[J]. Optoelectronics Letters, 2022, 18(4): 222
    Download Citation