• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 1, 153 (2022)
YANG Youwei*, LUO Yuxia, ZHANG Qingqing, and WANG Chunying
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    YANG Youwei, LUO Yuxia, ZHANG Qingqing, WANG Chunying. Application Progress of Molecular Simulation Technology in Kaolinite Research[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 153 Copy Citation Text show less
    References

    [2] YOUNG R A, HEWAT A W. Verification of the triclinic crystal structure of kaolinite[J]. Clays and Clay Minerals, 1988, 36(3): 225-232.

    [3] WHITE C E, PROVIS J L, RILEY D P, et al. What is the structure of kaolinite? reconciling theory and experiment[J]. The Journal of Physical Chemistry B, 2009, 113(19): 6756-6765.

    [9] KAMBEL R D, ALIYU B A, BARMINAS J T, et al. Synthesis and application of polylactic acid/kaolin nanocomposite as a flame retardant in flexible polyurethane foam[J]. International Journal of Materials and Chemistry, 2017, 7(1): 14-19.

    [12] FUCHS A H, BOUTIN A, TEULER J M, et al. Development and application of molecular simulation methods for the screening of industrial zeolite adsorbents[J]. Oil & Gas Science and Technology-Revue De l’IFP, 2006, 61(4): 571-578.

    [15] AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in materials studio[J]. Molecular Simulation, 2013, 39(14/15): 1153-1164.

    [20] DAAN F. Understanding molecular simulation: from algorithms to applications[M]. San Diego: Academic Press, 2002.

    [23] GRUNER J W. The crystal structure of kaolinite[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 1932, 83(1/2/3/4/5/6): 75-88.

    [24] BISH D L. Rietveld refinement of the kaolinite structure at 1.5 K[J]. Clays and Clay Minerals, 1993, 41(6): 738-744.

    [29] NIU J N, WANG D X, WU A C, et al. Molecular simulation study of argon adsorption on kaolinite surface with an experimental comparison[J]. Applied Surface Science, 2019, 478: 230-236.

    [31] WANG K, ZHANG B, KANG T H. The effect of mg, Fe(II), and Al doping on CH4: adsorption and diffusion on the surface of Na-kaolinite (001) by molecular simulations[J]. Molecules, 2020, 25(4): 1001.

    [32] ZHANG X, ZHAO R B, ZHANG N, et al. Insight to unprecedented catalytic activity of double-nitrogen defective metal-free catalyst: key role of coal gangue[J]. Applied Catalysis B: Environmental, 2020, 263: 118316.

    [33] SCHOLTZOV E, TUNEGA D. Prediction of mechanical properties of grafted kaolinite: a DFT study[J]. Applied Clay Science, 2020, 193: 105692.

    [35] RYBKA K, SUWAA K, MAZIARZ P, et al. Efficiency of Pb(II) and Mo(VI) removal by kaolinite impregnated with zero-valent iron particles[J]. Mineralogia, 2017, 48(1/2/3/4): 71-86.

    [37] CHEN Z C, ZHAO Y L, XU X W, et al. Structure and dynamics of Cs+ in kaolinite: insights from molecular dynamics simulations[J]. Computational Materials Science, 2020, 171: 109256.

    [38] ZHU D M, QIU T S, ZHONG J F, et al. Molecular dynamics simulation of aluminum inhibited leaching during ion-adsorbed type rare earth ore leaching process[J]. Journal of Rare Earths, 2019, 37(12): 1334-1340.

    [39] ZHANG Z J, ZHOU Q, ZHUANG L, et al. Adsorption of Ca(II) and K(I) on the kaolinite surface: a DFT study with an experimental verification[J]. Molecular Physics, 2021, 119(9): e1896047.

    [40] CHEN G B, ZHAO H Z, LI X, et al. Theoretical insights into the adsorption mechanism of Cd(II) on the basal surfaces of kaolinite[J/OL]. Journal of Hazardous Materials, 2022, 422: 126795. https://doi.org/10.1016/j.jhazmat.2021.126795.

    [42] SARI A, TUZEN M. Cd(II) adsorption from aqueous solution by raw and modified kaolinite[J]. Applied Clay Science, 2014, 88/89: 63-72.

    [43] ZHONG Z P, LI J F, MA Y Y, et al. The adsorption mechanism of heavy metals from coal combustion by modified kaolin: experimental and theoretical studies[J]. Journal of Hazardous Materials, 2021, 418: 126256.

    [44] MA Y, LU G W, SHAO C J, et al. Molecular dynamics simulation of hydrocarbon molecule adsorption on kaolinite (001) surface[J]. Fuel, 2019, 237: 989-1002.

    [45] LIU Y L, HOU J. Selective adsorption of CO2/CH4 mixture on clay-rich shale using molecular simulations[J]. Journal of CO2 Utilization, 2020, 39: 101143.

    [48] HAN Y H, LIU W L, ZHOU J, et al. Interactions between kaolinite AlOH surface and sodium hexametaphosphate[J]. Applied Surface Science, 2016, 387: 759-765.

    [49] ZHANG X L, ZHAO Y L, ZHANG Z H, et al. Investigation of the interaction between xanthate and kaolinite based on experiments, molecular dynamics simulation, and density functional theory[J]. Journal of Molecular Liquids, 2021, 336: 116298.

    [50] CHANG Z Y, SUN C B, KOU J, et al. Experimental and molecular dynamics simulation study on the effect of polyacrylamide on bauxite flotation[J]. Minerals Engineering, 2021, 164: 106810.

    [51] ZIEMIAN'SKI P P, DERKOWSKI A, SZCZUROWSKI J, et al. The structural versus textural control on the methane sorption capacity of clay minerals[J]. International Journal of Coal Geology, 2020, 224: 103483.

    CLP Journals

    [1] GE Jinyu, WEI Hua, XU Fei, HAN Xuesong, ZHU Pengfei, XIAO Huaiqian, LI Huaisen. Influence of CSH-Montmorillonite Interface Energy on Compressive Strength of Cement-Stabilized Montmorillonite Clay[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 827

    YANG Youwei, LUO Yuxia, ZHANG Qingqing, WANG Chunying. Application Progress of Molecular Simulation Technology in Kaolinite Research[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 153
    Download Citation