[1] 武江鹏, 乔明军, 闫振纲, 等. 战斗部破片场参数测试技术发展综述[J]. 兵器装备工程学报, 2019, 40(5): 105-109. doi: 10.11809/bqzbgcxb2019.05.023WUJ P, QIAOM J, YANZ G, et al. Overview of testing technology for warhead fragments characterization[J]. Journal of Ordnance Equipment Engineering, 2019, 40(5): 105-109.(in Chinese). doi: 10.11809/bqzbgcxb2019.05.023
[2] C SUN, Y Y JIA, D N WANG. Modeling of high-speed laser photography system for field projectile testing. Optik, 241, 166980(2021).
[3] H WANG, N F XIAO. Underwater object detection method based on improved faster RCNN. Applied Sciences, 13, 2746(2023).
[4] 李想, 特日根, 仪锋, 等. 针对全球储油罐检测的TCS-YOLO模型[J]. 光学 精密工程, 2023, 31(2): 246-262. doi: 10.37188/OPE.20233102.0246LIX, TER G, YIF, et al. TCS-YOLO model for global oil storage tank inspection[J]. Opt. Precision Eng., 2023, 31(2): 246-262.(in Chinese). doi: 10.37188/OPE.20233102.0246
[5] X K ZHU, S C LYU, X WANG et al. TPH-YOLOv5: improved Yolov5 based on transformer prediction head for object detection on drone-captured scenarios, 2778-2788(2021).
[6] C PENG, M ZHU, H E REN et al. Small object detection method based on weighted feature fusion and CSMA attention module. Electronics, 11, 2546(2022).
[7] 杨晨, 佘璐, 杨璐, 等. 改进YOLOv5的遥感影像目标检测算法[J]. 计算机工程与应用, 2023, 59(15): 76-86. doi: 10.3778/j.issn.1002-8331.2301-0220YANGC, SHEL, YANGL, et al. Improved YOLOv5 object detection algorithm for remote sensing images[J]. Computer Engineering and Applications, 2023, 59(15): 76-86.(in Chinese). doi: 10.3778/j.issn.1002-8331.2301-0220
[8] H LIAO, W Q ZHU. YOLO-DRS: a bioinspired object detection algorithm for remote sensing images incorporating a multi-scale efficient lightweight attention mechanism. Biomimetics, 8, 458(2023).
[9] L Y LIU, B C WANG, Z H KUANG et al. GenDet: meta learning to generate detectors from few shots. IEEE Transactions on Neural Networks and Learning Systems, 33, 3448-3460(2022).
[10] 陈筱, 朱向冰, 吴昌凡, 等. 基于迁移学习与特征融合的眼底图像分类[J]. 光学 精密工程, 2021, 29(2): 388-399. doi: 10.37188/OPE.20212902.0388CHENX, ZHUX B, WUC F, et al. Research on fundus image classification based on transfer learning and feature fusion[J]. Opt. Precision Eng., 2021, 29(2): 388-399.(in Chinese). doi: 10.37188/OPE.20212902.0388
[11] 郭保青, 张德芬. 基于度量元学习的铁路小样本入侵目标检测方法[J]. 光学 精密工程, 2023, 31(12): 1816-1826. doi: 10.37188/ope.20233112.1816GUOB Q, ZHANGD F. Railway few-shot intruding objects detection method with metric meta learning[J]. Opt. Precision Eng., 2023, 31(12): 1816-1826.(in Chinese). doi: 10.37188/ope.20233112.1816
[12] J X WU, X T TIAN, G Q ZHONG. Supervised contrastive representation embedding based on transformer for few-shot classification. Journal of Physics: Conference Series, 2278(2022).
[13] X YAO, J L ZHU, G Y HUO et al. Model-agnostic multi-stage loss optimization meta learning. International Journal of Machine Learning and Cybernetics, 12, 2349-2363(2021).