• Photonics Research
  • Vol. 10, Issue 3, 618 (2022)
Jun Ye1, Xiaoya Ma1, Yang Zhang1, Jiangming Xu1、2、*, Hanwei Zhang1, Tianfu Yao1, Jinyong Leng1, and Pu Zhou1、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2e-mail: jmxu1988@163.com
  • 3e-mail: zhoupu203@163.com
  • show less
    DOI: 10.1364/PRJ.445432 Cite this Article Set citation alerts
    Jun Ye, Xiaoya Ma, Yang Zhang, Jiangming Xu, Hanwei Zhang, Tianfu Yao, Jinyong Leng, Pu Zhou. Revealing the dynamics of intensity fluctuation transfer in a random Raman fiber laser[J]. Photonics Research, 2022, 10(3): 618 Copy Citation Text show less
    (a) Schematic of the experimental setup. ASE, amplified spontaneous emission; WDM, wavelength division multiplexer; FBG, fiber Bragg grating; RDFB, random distributed feedback. (b) Normalized temporal profiles of the fiber oscillator and the ASE source. Radio frequency (RF) spectra of (c) the fiber oscillator and (d) the ASE source. Inset of (c) shows a zoom-in around the fundamental repetition rate of the fiber oscillator.
    Fig. 1. (a) Schematic of the experimental setup. ASE, amplified spontaneous emission; WDM, wavelength division multiplexer; FBG, fiber Bragg grating; RDFB, random distributed feedback. (b) Normalized temporal profiles of the fiber oscillator and the ASE source. Radio frequency (RF) spectra of (c) the fiber oscillator and (d) the ASE source. Inset of (c) shows a zoom-in around the fundamental repetition rate of the fiber oscillator.
    Spectral evolution of the RRFL pumped by (a) the fiber oscillator and (b) the ASE source. Legends indicate the injected pump powers. (c) Spectral purity, (d) FWHM linewidth, and (e) 10-dB linewidth of the 1st-order Stokes wave as functions of pump power.
    Fig. 2. Spectral evolution of the RRFL pumped by (a) the fiber oscillator and (b) the ASE source. Legends indicate the injected pump powers. (c) Spectral purity, (d) FWHM linewidth, and (e) 10-dB linewidth of the 1st-order Stokes wave as functions of pump power.
    (a) Output powers of the 1st-order Stokes wave (circles) and the 2nd-order Stokes wave (squares). (b) Temporal profiles and (c) corresponding RF spectra of the 1st-order Stokes wave at the maximum output powers. Blue lines (points) and red lines (points), respectively, indicate the results pumped by the fiber oscillator and ASE source.
    Fig. 3. (a) Output powers of the 1st-order Stokes wave (circles) and the 2nd-order Stokes wave (squares). (b) Temporal profiles and (c) corresponding RF spectra of the 1st-order Stokes wave at the maximum output powers. Blue lines (points) and red lines (points), respectively, indicate the results pumped by the fiber oscillator and ASE source.
    Snapshot of longitudinal power distributions with the pump fluctuation amplitude of (a) 2 W and (b) 5 W. (c) Normalized fluctuation amplitude (NFA) of the 1st-order Stokes wave as a function of the pump NFA. (d) Spectral purity dependence on the pump NFA. Note that the pump fluctuation frequency for (a)–(d) is fixed at 10 MHz. Output temporal behaviors with different pump fluctuation frequencies of (e) 10 MHz, (f) 100 MHz, and (g) 1 GHz. (h) RIN transfer with and without temporal walk-off effect. The total pump power is 10 W, and the fiber length is 2 km. RIN transfer dependence on (i) walk-off parameter and (f) fiber length.
    Fig. 4. Snapshot of longitudinal power distributions with the pump fluctuation amplitude of (a) 2 W and (b) 5 W. (c) Normalized fluctuation amplitude (NFA) of the 1st-order Stokes wave as a function of the pump NFA. (d) Spectral purity dependence on the pump NFA. Note that the pump fluctuation frequency for (a)–(d) is fixed at 10 MHz. Output temporal behaviors with different pump fluctuation frequencies of (e) 10 MHz, (f) 100 MHz, and (g) 1 GHz. (h) RIN transfer with and without temporal walk-off effect. The total pump power is 10 W, and the fiber length is 2 km. RIN transfer dependence on (i) walk-off parameter and (f) fiber length.
    Comparison of the output characteristics with the pumping of fiber oscillator and ASE source. (a) Simulated power evolutions and (b) longitudinal power distributions. (c) Simulated and (d) experimental output spectrum of the 1st-order Stokes wave. The central wavelength is 1120 nm. (e) Simulated temporal profiles of the 1st-order Stokes wave. The pump power for (b)–(e) is fixed at 8 W.
    Fig. 5. Comparison of the output characteristics with the pumping of fiber oscillator and ASE source. (a) Simulated power evolutions and (b) longitudinal power distributions. (c) Simulated and (d) experimental output spectrum of the 1st-order Stokes wave. The central wavelength is 1120 nm. (e) Simulated temporal profiles of the 1st-order Stokes wave. The pump power for (b)–(e) is fixed at 8 W.
    ParameterSymbolValue
    Attenuation coefficientα0,α1,α23.00×104  m1, 2.94×104  m1, 2.88×104  m1
    BandwidthΔν1,Δν20.25 THz
    Wavelengthλ0,λ1,λ21067, 1120, 1178 nm
    Left reflectivityRL1,RL20.4×105,4×105
    Right reflectivityRR1,RR24×105
    Group velocityvg0,vg1,vg22.0421×108m/s, 2.0427×108m/s, 2.0432×108m/s
    Raman gain coefficientgR1,gR20.64,0.61  W1/km
    Rayleigh backscattering coefficientε0,ε1,ε20.51×106  m1, 0.50×106  m1, 0.49×106  m1
    Table 1. Parameter Values in the Simulation (Part I)
    ParameterSymbolValue
    2nd-order dispersion coefficientβ2p,β2s,β2h19.3, 15.1, 10.7  ps2/km
    Kerr nonlinearity coefficientγ0,γ1,γ22.39, 2.28, 2.17  W1/km
    Walk-off parameterd01,d121.60, 1.08 ps/m
    Table 2. Parameter Values in the Simulation (Part II)
    Jun Ye, Xiaoya Ma, Yang Zhang, Jiangming Xu, Hanwei Zhang, Tianfu Yao, Jinyong Leng, Pu Zhou. Revealing the dynamics of intensity fluctuation transfer in a random Raman fiber laser[J]. Photonics Research, 2022, 10(3): 618
    Download Citation