• Infrared Technology
  • Vol. 42, Issue 4, 301 (2020)
Yiqun ZHAO1、2, Libin TANG1、3、4、*, Yuping ZHANG3、4, Rongbin JI3, and Shengyi YANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: Cite this Article
    ZHAO Yiqun, TANG Libin, ZHANG Yuping, JI Rongbin, YANG Shengyi. Research Progress Regarding Properties, Applications, and Infrared Detection of GeTe Thin Films[J]. Infrared Technology, 2020, 42(4): 301 Copy Citation Text show less
    References

    [1] Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nat. Mater., 2010, 7: 101-110.

    [2] Levin E M, Besser M F, Hanus R. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials[J]. J. Appl. Phys., 2013, 114(8): 083713.

    [3] Bastard A, Bastien J C, Hyot B, et al. Crystallization study of “melt quenched” amorphous GeTe by transmission electron microscopy for phase change memory applications[J]. Appl. Phys. Lett., 2011, 99(24): 243103.

    [4] El-Hinnawy N, Borodulin P, Wagner B, et al. A four-terminal, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation[J]. IEEE Electron Device Lett., 2013, 34(10): 1313-1315.

    [5] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nat. Mater., 2007, 6: 824.

    [6] ZHOU X, DONG W, ZHANG H, et al. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation[J]. Sci. Rep., 2015, 5: 11150.

    [7] Rinaldi C, Varotto S, Asa M, et al. Ferroelectric Control of the Spin Texture in GeTe[J]. Nano Lett., 2018, 18(5): 2751-2758.

    [8] Fukuma Y, Nishimura N, Asada H, et al. Appearance of ferromagnetism by crystallizing .-Ge1.xMnxTe film[J]. Physica E, 2001, 10(1-3): 268-272.

    [9] Raoux S, Mu.oz B, Cheng H-Y, et al. Phase transitions in Ge-Te phase change materials studied by time-resolved x-ray diffraction[J]. Appl. Phys. Lett., 2009, 95(14): 143118.

    [10] Lencer D, Salinga M, Grabowski B, et al. A map for phase-change materials[J]. Nat. Mater., 2008, 7(12): 972-977.

    [11] Okamoto H. Ge-Te (Germanium-Tellurium)[J]. Journal of Phase Equilibria, 2000, 21(5): 496-496.

    [12] Shaltaf R, Durgun E, Raty J Y, et al. Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory[J]. Phys. Rev. B, 2008, 78(20): 205203.

    [13] Giussani A, Perumal K, Hanke M, et al. On the epitaxy of germanium telluride thin films on silicon substrates[J]. Phys. Status Solidi B, 2012, 249(10): 1939-1944.

    [14] Kim B S, Kim I H, Lee J K, et al. Electron transport properties of rapidly solidified(GeTe)x(AgSbTe2)1-x pseudobinary thermoelectric com-pounds[J]. Electron. Mater. Lett., 2010, 6(4): 181-185.

    [15] King M R, Wagner B P, Jones E B, et al. Development of cap-free sputtered GeTe films for inline phase change switch based RF circuits[J]. J. Vac. Sci. Technol. B, 2014, 32(4): 041204.

    [16] Sittner E-R, Siegert K S, Jost P, et al. (GeTe)x-(Sb2Te3)1-x phase-change thin films as potential thermoelectric materials[J]. Phys. Status Solidi A, 2013, 210(1): 147-152.

    [17] Polking M J, Han M-G, Yourdkhani A, et al. Ferroelectric order in individual nanometre-scale crystals[J]. Nat. Mater., 2012, 11(8): 700-709.

    [18] ZHANG W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing[J]. Nat. Rev. Mater., 2019, 4(3): 150-168.

    [19] Bruns G, Merkelbach P, Schlockermann C, et al. Nanosecond switching in GeTe phase change memory cells[J]. Appl. Phys. Lett., 2009, 95(4): 043108.

    [20] GE Z H, ZHAO L D, WU D, et al. Low-cost, abundant binary sulfides as promising thermoelectric materials[J]. Mater. Today, 2016, 19(4): 227-239.

    [21] Perumal S, Roychowdhury S, Biswas K. High performance thermoelectric materials and devices based on GeTe[J]. J. Mater. Chem. C, 2016, 4(32): 7520-7536.

    [22] WANG M, Rais-Zadeh M. Development and evaluation of germanium telluride phase change material based ohmic switches for RF applications[J]. J. of Micromech. and Microeng., 2017, 27(1): 013001.

    [23] GUO P, Sarangan A, Agha I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators[J]. Appl. Sci., 2019, 9(3): 530.

    [24] ZHAO Y, TANG L, YANG S, et al. Infrared photodetector based on GeTe nanofilms with high performance[J]. Opt. Lett., 2020, 45(4): 1108-1111.

    [25] PENG Y P, GUO Y Y, ZHANG J J. Efficient 1.8 .m emission of a novel Tm3+ doped germanate-tellurite glass[J]. Chinese Physics Letters, 2013, 30(5): 054207.

    [26] Christakudi T A, Plachkova S K, Christakudis G C. Electrical resistivity and thermoelectric power of (GeTe)1.x(Bi2Te3)x solid solutions (0≤x≤ 0.05) in the temperature interval from 80 to 350 K[J]. Phys. Status Solidi B, 1996, 195(1): 217-225.

    [27] Hoang K, Mahanti S D, Kanatzidis M G. Impurity clustering and impurity-induced bands in PbTe-, SnTe-, and GeTe-based bulk thermoelectrics[J]. Phys. Rev. B, 2010, 81(11): 115106.

    [28] Gelbstein Y, Dado B, Ben-Yehuda O, et al. Highly Efficient Ge-Rich GexPb1.xTe Thermoelectric Alloys[J]. J. Electron. Mater., 2009, 39(9): 2049-2052.

    [29] LI S P, LI J Q, WANG Q B, et al. Synthesis and thermoelectric properties of the (GeTe)1.x(PbTe)x alloys[J]. Solid State Sciences, 2011, 13(2): 399-403.

    [30] Lee J K, Oh M W, Kim B S, et al. Influence of Mn on crystal structure and thermoelectric properties of GeTe compounds[J]. Electron. Mater. Lett., 2014, 10(4): 813-817.

    [31] Perumal S, Roychowdhury S, Biswas K. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1.xBixTe[J]. Inorganic Chemistry Frontiers, 2016, 3(1): 125-132.

    [32] Perumal S, Roychowdhury S, Negi D S, et al. High thermoelectric performance and enhanced mechanical stability of p-type Ge1.xSbxTe[J]. Chem. Mater., 2015, 27(20): 7171-7178.

    [33] Gelbstein Y, Ben-Yehuda O, Pinhas E, et al. Thermoelectric properties of (Pb,Sn,Ge)Te-based alloys[J]. J. Electron. Mater., 2009, 38(7): 1478-1482.

    [34] Schr.der T, Rosenthal T, Giesbrecht N, et al. TAGS-related indium compounds and their thermoelectric properties-the solid solution series (GeTe)xAgInySb1.yTe2 (x=1–12; y=0.5 and 1)[J]. J. Am. Chem. Soc., 2014, 2(18): 6384-6395.

    [35] Rosenthal T, Welzmiller S, Oeckler O. The solid solution series Ge12M2Te15(M=Sb, In): Nanostructures and thermoelectric properties[J]. Solid State Sciences, 2013, 25: 118-123.

    [36] Salvador J R, YANG J, SHI X, et al. Transport and mechanical property evaluation of (AgSbTe)1.x(GeTe)x (x=0.80, 0.82, 0.85, 0.87, 0.90)[J]. J. Solid State Chem., 2009, 182(8): 2088-2095.

    [37] CHEN Y, Jaworski C M, GAO Y B, et al. Transport properties and valence band feature of high-performance (GeTe)85(AgSbTe2)15 thermoelectric materials[J]. New J. Phys., 2014, 16(1): 013057.

    [38] YANG S H, ZHU T J, SUN T, et al. Nanostructures in high-performance (GeTe)x(AgSbTe2) 1.x thermoelectric materials[J]. Nanotechnology, 2008, 19(24): 245707.

    [39] Levin E M, Cook B A, Harringa J L, et al. Analysis of Ce- and Yb-Doped TAGS-85 Materials with Enhanced Thermoelectric Figure of Merit[J]. Adv. Funct. Mater., 2011, 21(3): 441-447.

    [40] Levin E M, Bud'ko S L, Schmidt-Rohr K. Enhancement of thermopower of TAGS-85 high-performance thermoelectric material by doping with the rare earth Dy[J]. Adv. Funct. Mater., 2012, 22(13): 2766-2774.

    [41] Sadia Y, Ohaion-Raz T, Ben-Yehuda O, et al. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds[J]. J. Solid State Chem., 2016, 241: 79-85.

    [42] Gelbstein Y, Davidow J, Girard S N, et al. Controlling metallurgical phase separation reactions of the Ge0.87Pb0.13Te alloy for high thermoelectric performance[J]. Adv. Energy Mater., 2013, 3(6): 815-820.

    [43] WU D, ZHAO L D, HAO S, et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping[J]. J. Am. Chem. Soc., 2014, 136(32): 11412-11419.

    [44] Samanta M, Roychowdhury S, Ghatak J, et al. Ultrahigh average thermoelectric figure of merit, low lattice thermal conductivity and enhanced microhardness in nanostructured (GeTe)x(AgSbSe2)100.x[J]. Chemistry-A European Journal, 2017, 23(31): 7438-7443.

    [45] Srinivasan B, Gautier R, Gucci F, et al. Impact of coinage metal insertion on the thermoelectric properties of GeTe solid-state solutions[J]. J. Phys. Chem. C, 2017, 122(1): 227-235.

    [46] WU L, LI X, WANG S, et al. Resonant level-induced high thermoelectric response in indium-doped GeTe[J]. NPG Asia Materials, 2017, 9(1): e343-e343.

    [47] DONG J, SUN F H, TANG H, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance[J]. Energy Environ. Sci., 2019, 12(4): 1396-1403.

    [48] Guttmann G M, Gertner R, Samuha S, et al. Thermoelectric and mechanical properties of Ag and Cu doped (GeTe)0.96(Bi2Te3)0.04[J]. MRS Communications, 2018, 8(3): 1292-1299.

    [49] Kumar A, Vermeulen P A, Kooi B J, et al. Phase transitions of thermoelectric TAGS-85[J]. Inorg. Chem., 2017, 56(24): 15091-15100.

    [50] Kim H S, Madavali B, Hong S J, et al. Effect of milling time on the microstructure and thermoelectric properties of P-type TAGS-90 alloys by HEM and SPS[J]. Int. J. Appl. Ceram. Technol., 2016, 13(2): 239-244.

    [51] Aswal D K, Basu R, Singh A. Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects[J]. Energy Convers. Manage., 2016, 114: 50-67.

    [52] Cook B A, Chan T E, Dezsi G, et al. High-performance three-stage cascade thermoelectric devices with 20% efficiency[J]. J. Electron. Mater., 2015, 44(6): 1936-1942.

    [53] LI J, WU H, WU D, et al. Extremely low thermal conductivity in thermoelectric Ge0.55Pb0.45Te solid solutions via Se substitution[J]. Chem. Mater., 2016, 28(17): 6367-6373.

    [54] Singh A, Bhattacharya S, Thinaharan C, et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85)[J]. J. Phys. D, 2009, 42(1): 015502.

    [55] Levin E M, Kramer M J, Schmidt-Rohr K. Local composition and carrier concentration in Pb0.7Ge0.3Te and Pb0.5Ge0.5Te alloys from 125Te NMR and microscopy[J]. J. Phys. Chem. Solids, 2014, 75(11): 1269-1276.

    [56] Chua E K, SHI L P, ZHAO R, et al. Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications[J]. Appl. Phys. Lett., 2010, 97(18): 183506.

    [57] Borodulin P, El-Hinnawy N, Graninger A L, et al. Operation of a latching, low-loss, wideband microwave phase-change switch below 1 K[J]. J. Low Temp. Phys., 2018, 194(3-4): 273-284.

    [58] King M R, El-Hinnawy N, Salmon M, et al. Morphological analysis of GeTe in inline phase change switches[J]. J. Appl. Phys., 2015, 118(9): 094501.

    [59] Shim Y, Hummel G, Rais-Zadeh M, RF switches using phase change materials[C]//International Conference on Micro Electro Mechanical Systems, 2013: 237-240.

    [60] SUN X, Thelander E, Gerlach J W, et al. Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition[J]. J. Phys. D, 2015, 48(29): 295304.

    [61] Kooi B J, Momand J. High resolution imaging of chalcogenide superlattices for data storage applications: progress and prospects[J]. Physica Status Solidi (RRL) – Rapid Research Letters, 2019, 13(4): 1800562.

    [62] Navarro G, Sousa V, Persico A, et al. Material engineering of GexTe100.x compounds to improve phase-change memory performances[J]. Solid-State Electronics, 2013, 89: 93-100.

    [63] REN K, ZHU M, SONG W, et al. Electrical switching properties and structural characteristics of GeSe-GeTe films[J]. Nanoscale, 2019, 11(4): 1595-1603.

    [65] Liebmann M, Rinaldi C, Di Sante D, et al. Giant Rashba-Type Spin Splitting in Ferroelectric GeTe(111)[J]. Adv. Mater., 2016, 28(3): 560-565.

    [66] CHEN W Q, Lim S T, Sim C H, et al. Optical, magnetic, and transport behaviors of Ge1.xMnxTe ferromagnetic semiconductors grown by molecular-beam epitaxy[J]. J. Appl. Phys., 2008, 104(6): 063912.

    [67] Vadkhiya L, Arora G, Rathor A, et al. Electron momentum density and band structure calculations of α- and β-GeTe[J]. Radiat. Phys. Chem., 2011, 80(12): 1316-1322.

    [68] Bahl S K, Chopra K L. Amorphous versus crystalline GeTe films III. electrical properties and band structure[J]. J. Appl. Phys., 1970, 41(5): 2196-2212.

    [69] Edwards A, Pineda A, Schultz P, et al. Electronic structure of intrinsic defects in crystalline germanium telluride[J]. Phys. Rev. B, 2006, 73(4): 045210.

    [70] Manser J S, Christians J A, Kamat P V. Intriguing Optoelectronic Properties of Metal Halide Perovskites[J]. Chem. Rev., 2016, 116(21): 12956-13008.

    [71] Kotsalas I P, Papadimitriou D, Raptis C, et al. Raman study of photostructural changes in amorphous GexSb0.4.xS0.6[J]. J. Non-Cryst. Solids, 1998, 226(1-2): 85-91.

    [72] LONG M, WANG P, FANG H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Adv. Funct. Mater., 2018, 29(19): 1803807.

    [73] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS Quantum Dot Photodetectors[J]. Adv. Mater., 2015, 27(1): 176-180.

    [74] ZHANG W, CHIU M-H, CHEN C H, et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers[J]. ACS Nano, 2014, 8(8): 8653-8661.

    [75] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Lett., 2015, 15(12): 7853-7858.

    [76] FENG W, WU J B, LI X, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. J. Mater. Chem. C, 2015, 3(27): 7022-7028.

    ZHAO Yiqun, TANG Libin, ZHANG Yuping, JI Rongbin, YANG Shengyi. Research Progress Regarding Properties, Applications, and Infrared Detection of GeTe Thin Films[J]. Infrared Technology, 2020, 42(4): 301
    Download Citation