• Photonics Research
  • Vol. 13, Issue 2, 497 (2025)
Ying Zhu1, Lu Xu1, Xin Hua1, Kailai Liu2..., Yifan Liu1, Ming Luo2, Jia Liu1, Ziyue Dang1, Ye Liu1, Min Liu1, Hongguang Zhang1, Daigao Chen1, Lei Wang3, Xi Xiao1,3,* and Shaohua Yu3|Show fewer author(s)
Author Affiliations
  • 1National Information Optoelectronic Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
  • 2State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
  • 3Peng Cheng Laboratory, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.536939 Cite this Article Set citation alerts
    Ying Zhu, Lu Xu, Xin Hua, Kailai Liu, Yifan Liu, Ming Luo, Jia Liu, Ziyue Dang, Ye Liu, Min Liu, Hongguang Zhang, Daigao Chen, Lei Wang, Xi Xiao, Shaohua Yu, "Silicon photonics convolution accelerator based on coherent chips with sub-1 pJ/MAC power consumption," Photonics Res. 13, 497 (2025) Copy Citation Text show less
    References

    [1] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. Commun. ACM, 60, 84-90(2017).

    [2] M. Tan, Q. Le. EfficientNet: rethinking model scaling for convolutional neural networks. International Conference on Machine Learning, 6105-6114(2019).

    [3] A. Vaswani, N. Shazeer, N. Parmar. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, 6000-6010(2017).

    [4] T. Brown, B. Mann, N. Ryder. Language models are few-shot learners. Proceedings of the 34th International Conference on Neural Information Processing Systems, 33, 1877-1901(2020).

    [5] A. Baevski, W.-N. Hsu, A. Conneau. Unsupervised speech recognition. Proceedings of the 35th International Conference on Neural Information Processing Systems, 34, 27826-27839(2021).

    [6] S. Secinaro, D. Calandra, A. Secinaro. The role of artificial intelligence in healthcare: a structured literature review. BMC Med. Inform. Decis. Mak., 21, 125(2021).

    [7] C.-J. Wu, R. Raghavendra, U. Gupta. Sustainable AI: environmental implications, challenges and opportunities. Proc. Mach. Learn. Syst., 4, 795-813(2022).

    [8] M. Le Gallo, R. Khaddam-Aljameh, M. Stanisavljevic. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron., 6, 680-693(2023).

    [9] D. B. Strukov, G. S. Snider, D. R. Stewart. The missing memristor found. Nature, 453, 80-83(2008).

    [10] M. Jerry, P.-Y. Chen, J. Zhang. Ferroelectric FET analog synapse for acceleration of deep neural network training. IEEE International Electron Devices Meeting (IEDM), 6.2.1-6.2.4(2017).

    [11] K. Ni, X. Yin, A. F. Laguna. Ferroelectric ternary content-addressable memory for one-shot learning. Nat. Electron., 2, 521-529(2019).

    [12] G. Singh, L. Chelini, S. Corda. Near-memory computing: past, present, and future. Microprocess. Microsyst., 71, 102868(2019).

    [13] K. Roy, I. Chakraborty, M. Ali. In-memory computing in emerging memory technologies for machine learning: an overview. 57th ACM/IEEE Design Automation Conference (DAC), 1-6(2020).

    [14] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh. Memory devices and applications for in-memory computing. Nat. Nanotechnol., 15, 529-544(2020).

    [15] M. V. DeBole, B. Taba, A. Amir. TrueNorth: accelerating from zero to 64 million neurons in 10 years. Computer, 52, 20-29(2019).

    [16] S. Schmitt, J. Klähn, G. Bellec. Neuromorphic hardware in the loop: training a deep spiking network on the brainscales wafer-scale system. International Joint Conference on Neural Networks (IJCNN), 2227-2234(2017).

    [17] S. Han, H. Mao, W. J. Dally. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. arXiv(2015).

    [18] S. Han. Efficient methods and hardware for deep learning(2017).

    [19] Y. Zhu, G. L. Zhang, T. Wang. Statistical training for neuromorphic computing using memristor-based crossbars considering process variations and noise. Design, Automation & Test in Europe Conference & Exhibition (DATE), 1590-1593(2020).

    [20] P. Spilger, E. Müller, A. Emmel. hxtorch: PyTorch for brainscales-2: perceptrons on analog neuromorphic hardware. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning, 189-200(2020).

    [21] G. Wetzstein, A. Ozcan, S. Gigan. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [22] H. Zhou, J. Dong, J. Cheng. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl., 11(2022).

    [23] J. Cardenas, C. B. Poitras, J. T. Robinson. Low loss etchless silicon photonic waveguides. Opt. Express, 17, 4752-4757(2009).

    [24] L. Vivien, A. Polzer, D. Marris-Morini. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express, 20, 1096-1101(2012).

    [25] L. Yang, L. Zhang, R. Ji. On-chip optical matrix-vector multiplier. Proc. SPIE, 8855(2013).

    [26] C. Huang, S. Fujisawa, T. F. de Lima. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron., 4, 837-844(2021).

    [27] S. Ambrogio, P. Narayanan, H. Tsai. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature, 558, 60-67(2018).

    [28] J. Gu, C. Feng, Z. Zhao. Efficient on-chip learning for optical neural networks through power-aware sparse zeroth-order optimization. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 7583-7591(2021).

    [29] Y. Zhu, M. Liu, L. Xu. Multi-wavelength parallel training and quantization-aware tuning for wdm-based optical convolutional neural networks considering wavelength-relative deviations. Proceedings of the 28th Asia and South Pacific Design Automation Conference, 384-389(2023).

    [30] P. Dong, Y.-K. Chen, G.-H. Duan. Silicon photonic devices and integrated circuits. Nanophotonics, 3, 215-228(2014).

    [31] A. N. Tait, T. F. De Lima, E. Zhou. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7(2017).

    [32] G. Tanaka, T. Yamane, J. B. Héroux. Recent advances in physical reservoir computing: a review. Neural Netw., 115, 100-123(2019).

    [33] D. Brunner, M. C. Soriano, C. R. Mirasso. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun., 4, 1364(2013).

    [34] K. Vandoorne, P. Mechet, T. Van Vaerenbergh. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun., 5, 3541(2014).

    [35] K. Liu, T. Zhang, B. Dang. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron., 5, 761-773(2022).

    [36] Y.-W. Shen, R.-Q. Li, G.-T. Liu. Deep photonic reservoir computing recurrent network. Optica, 10, 1745-1751(2023).

    [37] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [38] X. Xu, M. Tan, B. Corcoran. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [39] J. Feldmann, N. Youngblood, M. Karpov. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [40] Y. Zhu, X. Zhang, X. Hua. Optoelectronic neuromorphic accelerator at 523.27 GOPS based on coherent optical devices. Optical Fiber Communication Conference, M2J-4(2023).

    [41] Y. Zhu, M. Luo, X. Hua. Silicon photonic neuromorphic accelerator using integrated coherent transmit-receive optical sub-assemblies. Optica, 11, 583-594(2024).

    [42] X. Meng, G. Zhang, N. Shi. Compact optical convolution processing unit based on multimode interference. Nat. Commun., 14, 3000(2023).

    [43] Y. Chen, M. Nazhamaiti, H. Xu. All-analog photoelectronic chip for high-speed vision tasks. Nature, 623, 48-57(2023).

    [44] J. Cheng, C. Huang, J. Zhang. Multimodal deep learning using on-chip diffractive optics with in situ training capability. Nat. Commun., 15, 6189(2024).

    [45] Z. Xu, T. Zhou, M. Ma. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science, 384, 202-209(2024).

    [46] C. D. McGillem, G. R. Cooper. Continuous and Discrete Signal and System Analysis(1991).

    [47] X. Xiao, L. Wang, M. Luo. High baudrate silicon photonics for the next-generation optical communications. European Conference on Optical Communication (ECOC), 1-4(2022).

    [48] X. Hu, D. Wu, H. Zhang. Ultrahigh-speed silicon-based modulators/photodetectors for optical interconnects. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2023).

    [49] M. Xu, M. He, H. Zhang. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [50] X. Xie, Y. Dai, K. Xu. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators. IEEE Photonics J., 4, 1196-1202(2012).

    [51] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [52] Z. Tang, D. Zhu, S. Pan. Coherent optical RF channelizer with large instantaneous bandwidth and large in-band interference suppression. J. Lightwave Technol., 36, 4219-4226(2018).

    [53] M. J. Filipovich, Z. Guo, M. Al-Qadasi. Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica, 9, 1323-1332(2022).

    [54] F. Pedregosa, G. Varoquaux, A. Gramfort. Scikit-learn: machine learning in Python. J. Mach. Learn. Res., 12, 2825-2830(2011).

    [55] A. Paszke, S. Gross, F. Massa. PyTorch: an imperative style, high-performance deep learning library. Proceedings of the 33rd International Conference on Neural Information Processing Systems, 32, 8026-8037(2019).

    [56] https://www.nvidia.com/en-us/data-center/a100/. https://www.nvidia.com/en-us/data-center/a100/

    [57] C. Yang, R. Hu, M. Luo. IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML. IEEE Photonics J., 8, 7903907(2016).

    [58] P. Caragiulo, O. E. Mattia, A. Arbabian. A 2× time-interleaved 28-GS/s 8-bit 0.03-mm2 switched-capacitor DAC in 16-nm FINFET CMOS. IEEE J. Solid-State Circuits, 56, 2335-2346(2021).

    [59] S. Nakano, M. Nagatani, K. Tanaka. A 180-mW linear MZM driver in CMOS for single-carrier 400-Gb/s coherent optical transmitter. European Conference on Optical Communication (ECOC), 1-3(2017).

    [60] S. Daneshgar, H. Li, T. Kim. A 128 Gb/s, 11.2 mW single-ended pam4 linear TIA with 2.7 μArms input noise in 22 nm FINFET CMOS. IEEE J. Solid-State Circuits, 57, 1397-1408(2022).

    [61] A. D. Güngördü, G. Dündar, M. B. Yelten. A high performance TIA design in 40 nm CMOS. IEEE International Symposium on Circuits and Systems (ISCAS), 1-5(2020).

    [62] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    Ying Zhu, Lu Xu, Xin Hua, Kailai Liu, Yifan Liu, Ming Luo, Jia Liu, Ziyue Dang, Ye Liu, Min Liu, Hongguang Zhang, Daigao Chen, Lei Wang, Xi Xiao, Shaohua Yu, "Silicon photonics convolution accelerator based on coherent chips with sub-1 pJ/MAC power consumption," Photonics Res. 13, 497 (2025)
    Download Citation