• Photonics Research
  • Vol. 12, Issue 8, 1619 (2024)
Alessandro Brugnoni1,2,*, Ali Emre Kaplan1,2, Valerio Vitali1,2, Kyle Bottrill2..., Michele Re3, Periklis Petropoulos2, Cosimo Lacava1 and Ilaria Cristiani1|Show fewer author(s)
Author Affiliations
  • 1Photonics Group, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia 27100, Italy
  • 2Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
  • 3Huawei Technologies Italia S.r.l, Centro direzionale Milano, Segrate 20054, Italy
  • show less
    DOI: 10.1364/PRJ.516588 Cite this Article Set citation alerts
    Alessandro Brugnoni, Ali Emre Kaplan, Valerio Vitali, Kyle Bottrill, Michele Re, Periklis Petropoulos, Cosimo Lacava, Ilaria Cristiani, "Frequency stabilization of C-band semiconductor lasers through a SiN photonic integrated circuit," Photonics Res. 12, 1619 (2024) Copy Citation Text show less
    References

    [1] B. Isaac, B. Song, S. S. Pinna. Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR. IEEE J. Sel. Top. Quantum Electron., 25, 8000107(2019).

    [2] S. Arafin, L. Coldren. Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron., 24, 6100612(2018).

    [3] R. Yan, S. P. Mestas, G. Yuan. Label-free silicon photonic biosensor system with integrated detector array. Lab Chip, 9, 2163-2168(2009).

    [4] R. Wang, A. Vasiliev, M. Muneeb. III–V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4 μm wavelength range. Sensors, 17, 1788(2017).

    [5] H. Zhao, S. Clemmen, A. Raza. Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide. Opt. Lett., 43, 1403-1406(2018).

    [6] R. Nagarajan, C. Joyner, R. Schneider. Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 11, 50-65(2005).

    [7] M. Heck, J. Bauters, M. Davenport. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron., 19, 6100117(2012).

    [8] A. Gowen, C. O’Sullivan, C. O’Donnell. Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci. Technol., 25, 40-46(2012).

    [9] M. Karaliūnas, K. E. Nasser, A. Urbanowicz. Non-destructive inspection of food and technical oils by terahertz spectroscopy. Sci. Rep., 8, 18025(2018).

    [10] M. Seo, H. Park. Terahertz biochemical molecule-specific sensors. Adv. Opt. Mater., 8, 1900662(2020).

    [11] P. Haring Bolívar, M. Nagel, F. Richter. Label–free THz sensing of genetic sequences: towards ‘THz biochips’. Philos. Trans. R. Soc. London A, 362, 323-335(2004).

    [12] T. Uehara, K. Tsuji, K. Hagiwara. Optical beat-note frequency stabilization between two lasers using a radio frequency interferometer in the gigahertz frequency band. Opt. Eng., 53, 124109(2014).

    [13] F. van Dijk, G. Kervella, M. Lamponi. Integrated InP heterodyne millimeter wave transmitter. IEEE Photon. Technol. Lett., 26, 965-968(2014).

    [14] M. Alouini, M. Brunel, F. Bretenaker. Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation. IEEE Photon. Technol. Lett., 10, 1554-1556(1998).

    [15] R. Guzmán, L. González, A. Zarzuelo. Widely tunable RF signal generation using an InP/Si3N4 hybrid integrated dual-wavelength optical heterodyne source. J. Lightwave Technol., 39, 7664-7671(2021).

    [16] D. A. B. Miller. Perfect optics with imperfect components. Optica, 2, 747-750(2015).

    [17] D. Coenen, H. Oprins, P. D. Heyn. Analysis of thermal crosstalk in photonic integrated circuit using dynamic compact models. IEEE Trans. Compon. Packag. Manuf. Technol., 12, 1350-1357(2022).

    [18] K. Sato, M. Murakami. Experimental investigation of thermal crosstalk in a distributed feedback laser array. IEEE Photon. Technol. Lett., 3, 501-503(1991).

    [19] I. Mathews, A. Abdullaev, S. Lei. Reducing thermal crosstalk in ten-channel tunable slotted-laser arrays. Opt. Express, 23, 23380-23393(2015).

    [20] D. Pérez-López, A. López, P. DasMahapatra. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun., 11, 6359(2020).

    [21] C. Taballione, R. van der Meer, H. Snijders. A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol., 1, 035002(2021).

    [22] C. Huang, S. Bilodea, T. F. de Lima. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits. APL Photon., 5, 040803(2020).

    [23] M. Fernandez-Getino Garcia, O. Edfors, J. Paez-Borrallo. Frequency offset correction for coherent OFDM in wireless systems. IEEE Trans. Consumer Electron., 47, 187-193(2001).

    [24] Z. Zhang, W. Jiang, H. Zhou. High accuracy frequency offset correction with adjustable acquisition range in OFDM systems. IEEE Trans. Wireless Commun., 4, 228-237(2005).

    [25] S. De, R. Das, R. Varshney. Design and simulation of thermo-optic phase shifters with low thermal crosstalk for dense photonic integration. IEEE Access, 8, 141632(2020).

    [26] G. Gilardi, W. Yao, H. R. Haghighi. Deep trenches for thermal crosstalk reduction in InP-based photonic integrated circuits. J. Lightwave Technol., 32, 4864-4870(2014).

    [27] M. Jacques, A. Samani, E. El-Fiky. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express, 27, 10456-10471(2019).

    [28] X. Wu, W. Liu, Z. Yuan. Low power consumption VOA array with air trenches and curved waveguide. IEEE Photon. J., 10, 7201308(2018).

    [29] M. Milanizadeh, D. Aguiar, A. Melloni. Canceling thermal cross-talk effects in photonic integrated circuits. J. Lightwave Technol., 37, 1325-1332(2019).

    [30] X. Xu, G. Ren, T. Feleppa. Self-calibrating programmable photonic integrated circuits. Nat. Photonics, 16, 595-602(2022).

    [31] J. Ling, J. Staffa, H. Wang. Self-injection locked frequency conversion laser. Laser Photon. Rev., 17, 2200663(2023).

    [32] K. Balakier, M. J. Fice, L. Ponnampalam. Monolithically integrated optical phase lock loop for microwave photonics. J. Lightwave Technol., 32, 3893-3900(2014).

    [33] S. Chen, C. Chow. Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera. IEEE Photon. J., 6, 7904106(2014).

    [34] H. Cai, A. W. Poon. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add–drop devices. Opt. Lett., 35, 2855-2857(2010).

    [35] H. Qiu, F. Zhou, J. Qie. A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 36, 4312-4318(2018).

    [36] Y. Hong, Y. Hong, J. Hong. Dispersion optimization of silicon nitride waveguides for efficient four-wave mixing. Photonics, 8, 16(2021).

    Alessandro Brugnoni, Ali Emre Kaplan, Valerio Vitali, Kyle Bottrill, Michele Re, Periklis Petropoulos, Cosimo Lacava, Ilaria Cristiani, "Frequency stabilization of C-band semiconductor lasers through a SiN photonic integrated circuit," Photonics Res. 12, 1619 (2024)
    Download Citation