• High Power Laser and Particle Beams
  • Vol. 32, Issue 11, 112006 (2020)
Yuanjun Wu, Yanqi Gao*, Yilin Hua, Qingnan Xie, Quan Zheng, Weixin Ma, and Zhan Sui
Author Affiliations
  • Shanghai Institute of Laser Plasma, CAEP, Shanghai 201800, China
  • show less
    DOI: 10.11884/HPLPB202032.200089 Cite this Article
    Yuanjun Wu, Yanqi Gao, Yilin Hua, Qingnan Xie, Quan Zheng, Weixin Ma, Zhan Sui. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32(11): 112006 Copy Citation Text show less
    References

    [1] She H, Tan S. Development and application prospects of high-energy laser weapon[J]. Infrared and Laser Engineering, 31, 267-271(2002).

    [2] Abramov P I, Kuznetsov E V, Skvortsov L A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems[J]. Journal of Optical Technology, 84, 331-341(2017).

    [3] Gibbon P, Förster E. Short-pulse laser-plasma interactions[J]. Plasma Physics and Controlled Fusion, 38, 769(1996).

    [4] Faure J, Glinec Y, Pukhov A. A laser–plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [5] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149-e149(2014).

    [6] Delaigue M, Hönninger C, Tres R, et al. Comparative ultrafast laser source study f advanced materials processing[C]IEEE Conference on Lasers ElectroOptics. 2012: 12.

    [7] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).

    [8] Yanovsky V, Felix C, Mourou G. Why ring regenerative amplification(regen)?[J]. Applied Physics B, 74, s181-s183(2002).

    [9] Singh S, Smith R G, Uitert L G V. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, Condensed Matter, 10, 2566-2572(1974).

    [10] Harmer A L, Linz A A, Gabbe D R. Fluorescence of Nd3+ in lithium yttrium fluoride[J]. Journal of Physics and Chemistry of Solids, 90, 1483-1491(1969).

    [11] Sharp E J. High-efficiency Nd3+: LiYF4 laser[J]. Journal of Applied Physics, 44, 5399(1973).

    [13] Murray J E, Lowdermilk W H. Nd: YAG regenerative amplifier[J]. Journal of Applied Physics, 51, 3548-3556(1980).

    [14] Bado P, Bouvier M, Coe J S. Nd: YLF mode-locked oscillator and regenerative amplifier[J]. Optics Letters, 12, 319-321(1987).

    [15] Saeed M, Kim D, Dimauro L F. Optimization and characterization of a high repetition rate, high intensity Nd: YLF regenerative amplifier[J]. Applied Optics, 30, 2527(1991).

    [16] Dimmick T E. Semiconductor-laser-pumped, CW mode-locked Nd: phosphate glass laser oscillator and regenerative amplifier[J]. Optics Letters, 15, 177-179(1990).

    [17] Gifford M, Weingarten K J. Diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 17, 1788-1790(1992).

    [18] Naito K, Ohmi M, Ishikawa K. Demonstration of high energy extraction efficiency in a laser-diode pumped high gain Nd: YAG regenerative amplifier[J]. Applied Physics Letters, 64, 1186(1994).

    [19] Turi L, Juhasz T. High-power longitudinally end-diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 20, 154-156(1995).

    [20] Bagnoud V, Luce J, Videau L. Diode-pumped regenerative amplifier delivering 100-mJ single-mode laser pulses[J]. Optics Letters, 26, 337-339(2001).

    [21] Sekine T, Matsuoka S I, Yasuhara R. 84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd: YLF ring amplifier with phase-conjugated wavefront corrector[J]. Optics Express, 18, 13927-13934(2010).

    [22] Braun A, Liu X, Kopf D. Diode-pumped Nd: glass regenerative amplifier for subpicosecond microjoule-level pulses[J]. Applied Optics, 36, 4163-4167(1997).

    [23] Ribeyre X, Videau L, Migus A. Nd: glass diode-pumped regenerative amplifier, multimillijoule short-pulse chirped-pulse-amplifier laser[J]. Optics Letters, 28, 1374-1376(2003).

    [24] Rapoport W R, Khattak C P. Titanium sapphire laser characteristics[J]. Applied Optics, 27, 2677-2684(1988).

    [25] Moulton P F. Spectroscopic and laser characteristics of Ti2O3[J]. J Opt Soc Am B, 3, 125-133(1986).

    [26] Xu M, Si J L, Zhang X C. Study on thermal properties of titanium-doped sapphire crystal[J]. Journal of Synthetic Crystals, 43, 1043-1049(2014).

    [27] Salin F, Squier J, Mourou G. Multikilohertz Ti: Al2O3 amplifier for high-power femtosecond pulses[J]. Optics Letters, 16, 1964-1966(1991).

    [28] Norris T B. Femtosecond pulse amplification at 250 kHz with a Ti: sapphire regenerative amplifier and application to continuum generation[J]. Optics Letters, 17, 1009-1011(1992).

    [29] Rudd J V, Korn G, Kane S. Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti: Al2O3 regenerative amplifier[J]. Optics Letters, 18, 2044-2046(1993).

    [30] Wynne K, Reid G D, Hochstrasser R M. Regenerative amplification of 30-fs pulses in Ti: sapphire at 5 kHz[J]. Optics Letters, 19, 895-897(1994).

    [31] Yamakawa K, Aoyama M, Matsuoka S. Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti: sapphire amplifiers[J]. Optics Letters, 23, 525-527(1998).

    [32] Nabekawa Y, Shimizu Y, Midorikawa K. Sub-20-fs terawatt-class laser system with a mirrorless regenerative amplifier and an adaptive phase controller[J]. Optics Letters, 27, 1265-1267(2002).

    [33] Gaudiosi D M, Lytle A L, Kohl P. 11-W average power Ti: sapphire amplifier system using downchirped pulse amplification[J]. Optics Letters, 29, 2665-2667(2004).

    [34] Hong K H, Kostritsa S, Yu T J. 100-kHz high-power femtosecond Ti: sapphire laser based on downchirped regenerative amplification[J]. Optics Express, 14, 970-978(2006).

    [35] Takada H, Kakehata M, Torizuka K. High-repetition-rate 12 fs pulse amplification by a Ti: sapphire regenerative amplifier system[J]. Optics Letters, 31, 1145-1147(2006).

    [36] Yang J Z H, Walker B C. 0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti: sapphire regenerative amplifier[J]. Optics Letters, 26, 453-455(2001).

    [37] Zhavoronkov N, Korn G. Regenerative amplification of femtosecond laser pulses in Ti: sapphire at multikilohertz repetition rates[J]. Optics Letters, 29, 198-200(2004).

    [38] Matsushima I, Yashiro H, Tomie T. 10 kHz 40 W Ti: sapphire regenerative ring amplifier[J]. Optics Letters, 31, 2066-2068(2006).

    [39] Zhang X, Schneider E, Taft G. Multi-microjoule, MHz repetition rate Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 20, 7015-7021(2012).

    [40] Backus S, Kirchner M, Lemons R. Direct diode pumped Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 25, 3666-3674(2017).

    [41] Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media[J]. Optics Letters, 19, 1343-1345(1994).

    [42] Hönninger C, Paschotta R, Graf M. Ultrafast ytterbium-doped bulk lasers and laser amplifiers[J]. Applied Physics B, 69, 3-17(1999).

    [43] Kuleshov N V, Lagatsky A A, Podlipensky A V. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd (WO4)2[J]. Optics Letters, 22, 1317-1319(1997).

    [44] Brenier A, Boulon G. Overview of the best Yb3+ -doped laser crystals[J]. Journal of Alloys & Compounds, 323, 210-213(2001).

    [45] Paradis C, Modsching N, Wittwer V J. Generation of 35-fs pulses from a Kerr lens mode-locked Yb: Lu2O3 thin-disk laser[J]. Optics Express, 25, 14918-14925(2017).

    [46] Druon F, Ricaud S, Papadopoulos D N. On Yb: CaF2 and Yb: SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance[J]. Optical Materials Express, 1, 489-502(2011).

    [47] Petit V, Doualan J L, Camy P. CW and tunable laser operation of Yb3+ doped CaF2[J]. Applied Physics B, 78, 681-684(2004).

    [48] Hönninger C, Johannsen I, Moser M. Diode-pumped thin-disk Yb: YAG regenerative amplifier[J]. Applied Physics B: Lasers and Optics, 65, 423-426(1997).

    [49] Höiminger C, Zhang G, Moser M, et al. Diodepumped thin disc Yb: YAG regenerative amplifier[C]Advanced Solid State Lasers. 1998: TS3.

    [50] Stolzenburg C, Giesen A. Picosecond regenerative Yb: YAG thin disk amplifier at 200 kHz repetition rate 62 W output power[C]Advanced SolidState Photonics. 2007: MA6.

    [51] Metzger T, Schwarz A, Teisset C Y. High-repetition-rate picosecond pump laser based on a Yb: YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 34, 2123-2125(2009).

    [52] Dörring J, Killi A, Morgner U. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers[J]. Optics Express, 12, 1759-1768(2004).

    [53] Volodin B L, Dolgy S V, Melnik E D. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings[J]. Optics Letters, 29, 1891-1893(2004).

    [54] Chyla M, Smrz M, Mocek T. Highenergy, picosecond regenerative thindisk amplifier at 1 kHz[C]Proc of SPIE. 2012: 82351W.

    [55] Teisset C, Schultze M, Bessing R, et al. 300 W picosecond thindisk regenerative amplifier at 10 kHz repetition rate[C]Advanced Solid State Lasers. 2013.

    [56] Chyla M, Miura T, Smrž M, et al. 50mJ, 1kHz Yb: YAG thindisk regenerative amplifier with 969nm pulsed pumping[C]Proc of SPIE. 2014:89590S.

    [57] Klingebiel S, Schultze M, Teisset C Y, et al. 220mJ, 1 kHz picosecond regenerative thindisk amplifier[C]The European Conference on Lasers ElectroOptics. 2015.

    [58] Jung R, Tümmler J, Will I. Regenerative thin-disk amplifier for 300 mJ pulse energy[J]. Optics Express, 24, 883(2016).

    [59] Jung R, Tümmler J, Nubbemeyer T. Thin-disk ring amplifier for high pulse energy[J]. Optics Express, 24, 4375(2016).

    [60] Nubbemeyer T, Kaumanns M, Ueffing M. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 42, 1381-1384(2017).

    [61] Krötz P, Wt C, Grebing C, et al. Towards 2 kW, 20 kHz ultrafast thindisk based regenerative amplifiers[C]Advanced Solid State Lasers. 2019: ATh1A.

    [62] Beyertt A, Nickel D, Giesen A. Femtosecond thin-disk Yb: KYW regenerative amplifier[J]. Applied Physics B, 80, 655-660(2005).

    [63] Buenting U, Sayinc H, Wandt D. Regenerative thin disk amplifier with combined gain spectra producing 500 μJ sub 200 fs pulses[J]. Optics Express, 17, 8046-8050(2009).

    [64] Sevillano P, Brisset J G, Trophème B, et al. High energy regenerative amplifier based on Yb: CaF2[C]Proc of SPIE. 2017: 1008223.

    [65] Caracciolo E, Pirzio F, Kemnitzer M. 42 W femtosecond Yb: Lu2O3 regenerative amplifier[J]. Optics Letters, 41, 3395-3398(2016).

    Yuanjun Wu, Yanqi Gao, Yilin Hua, Qingnan Xie, Quan Zheng, Weixin Ma, Zhan Sui. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32(11): 112006
    Download Citation