• Chinese Journal of Lasers
  • Vol. 48, Issue 24, 2401002 (2021)
Quanping Zhao1、2, Haiying Song1、2、*, Yang Wang1、2, Xun Liu3, Wei Li3, and Shibing Liu1、2、**
Author Affiliations
  • 1Strong-Field and Ultrafast Photonics Lab, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 2Key Laboratory of Trans-Scale Laser Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 3Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China
  • show less
    DOI: 10.3788/CJL202148.2401002 Cite this Article Set citation alerts
    Quanping Zhao, Haiying Song, Yang Wang, Xun Liu, Wei Li, Shibing Liu. Hot Electron Transport Characteristics in a Conical-Entry-Multilayer Target Driven by Intense Laser[J]. Chinese Journal of Lasers, 2021, 48(24): 2401002 Copy Citation Text show less
    References

    [1] Tabak M, Hammer J, Glinsky M E et al. Ignition and high gain with ultrapowerful lasers[J]. Physics of Plasmas, 1, 1626-1634(1994).

    [2] Kodama R, Norreys P A, Mima K et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 412, 798-802(2001).

    [3] Honrubia J J, Meyer-Ter-Vehn J. Fast ignition of fusion targets by laser-driven electrons[J]. Plasma Physics and Controlled Fusion, 51, 014008(2009).

    [4] Cottrill L A, Langdon A B, Lasinski B F et al. Kinetic and collisional effects on the linear evolution of fast ignition relevant beam instabilities[J]. Physics of Plasmas, 15, 082108(2008).

    [5] Sentoku Y, Mima K, Ruhl H et al. Laser light and hot electron micro focusing using a conical target[J]. Physics of Plasmas, 11, 3083-3087(2004).

    [6] Nakamura T, Sakagami H, Johzaki T et al. Optimization of cone target geometry for fast ignition[J]. Physics of Plasmas, 14, 103105(2007).

    [7] Yang X H, Yu W, Xu H et al. Generation of high-energy-density ion bunches by ultraintense laser-cone-target interaction[J]. Physics of Plasmas, 21, 063105(2014).

    [8] Hu L X, Yu T P, Shao F Q et al. Enhanced dense attosecond electron bunch generation by irradiating an intense laser on a cone target[J]. Physics of Plasmas, 22, 033104(2015).

    [9] Zou D B, Zhuo H B, Yang X H et al. Control of target-normal-sheath-accelerated protons from a guiding cone[J]. Physics of Plasmas, 22, 063103(2015).

    [10] Hu Y T, Zhang H, Deng H X et al. Review of research developments and important applications of laser-driven ion acceleration[J]. Chinese Journal of Lasers, 48, 0401006(2021).

    [11] Robinson A P L, Sherlock M, Norreys P A. Artificial collimation of fast-electron beams with two laser pulses[J]. Physical Review Letters, 100, 025002(2008).

    [12] Norreys P A, Scott R H H, Lancaster K L et al. Recent fast electron energy transport experiments relevant to fast ignition inertial fusion[J]. Nuclear Fusion, 49, 104023(2009).

    [13] Scott R H H, Beaucourt C, Schlenvoigt H P et al. Controlling fast-electron-beam divergence using two laser pulses[J]. Physical Review Letters, 109, 015001(2012).

    [14] Malko S, Vaisseau X, Perez F et al. Enhanced relativistic-electron beam collimation using two consecutive laser pulses[J]. Scientific Reports, 9, 14061(2019).

    [15] Liu Z, Xiong J, An H H et al. Gamma radiation characteristics of double-layer targets driven by nanosecond/picosecond two-beam lasers[J]. Chinese Journal of Lasers, 46, 0801007(2019).

    [16] Robinson A P L, Sherlock M. Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition[J]. Physics of Plasmas, 14, 083105(2007).

    [17] Robinson A P L, Key M H, Tabak M. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard[J]. Physical Review Letters, 108, 125004(2012).

    [18] Ramakrishna B, Kar S, Robinson A P L et al. Laser-driven fast electron collimation in targets with resistivity boundary[J]. Physical Review Letters, 105, 135001(2010).

    [19] Debayle A, Gremillet L, Honrubia J J et al. Reduction of the fast electron angular dispersion by means of varying-resistivity structured targets[J]. Physics of Plasmas, 20, 013109(2013).

    [20] Wu S Z, Zhou C T, Zhu S P. Effect of density profile on beam control of intense laser-generated fast electrons[J]. Physics of Plasmas, 17, 063103(2010).

    [21] Zhou C T, Wang X G, Wu S Z et al. Density effect on relativistic electron beams in a plasma fiber[J]. Applied Physics Letters, 97, 201502(2010).

    [22] Cai H B, Zhu S P, Chen M et al. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas[J]. Physical Review E, 83, 036408(2011).

    [23] Cai H B, Zhu S P, He X T et al. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses[J]. Physics of Plasmas, 18, 023106(2011).

    [24] Li H, Tang X B, Hang S et al. High-directional laser-plasma-induced X-ray source assisted by collimated electron beams in targets with a self-generated magnetic field[J]. Fusion Engineering and Design, 144, 193-201(2019).

    [25] Lv C, Wan F, Hou Y J et al. Guiding and collimating the fast electrons by using a low-density-core target with buried high density layers[J]. Plasma Physics and Controlled Fusion, 59, 025006(2017).

    [26] Nieter C, Cary J R. VORPAL: a versatile plasma simulation code[J]. Journal of Computational Physics, 196, 448-473(2004).

    [27] Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 59, 52-55(1987).

    [28] Tao Y Z. Studying on interaction of high intensity ultrashort pulse laser with solid-plasmas[D], 17-26(2001).

    [29] Qi W, He S K, Yan Y H et al. Numerical simulation of photoneutron generation in ultra-intense short laser-solid interactions[J]. Chinese Journal of Lasers, 46, 0901007(2019).

    Quanping Zhao, Haiying Song, Yang Wang, Xun Liu, Wei Li, Shibing Liu. Hot Electron Transport Characteristics in a Conical-Entry-Multilayer Target Driven by Intense Laser[J]. Chinese Journal of Lasers, 2021, 48(24): 2401002
    Download Citation