• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101004 (2022)
Zhixu Jia, Xiaohui Guo, Yadong Jia, Weiping Qin, and Guanshi Qin*
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/CJL202249.0101004 Cite this Article Set citation alerts
    Zhixu Jia, Xiaohui Guo, Yadong Jia, Weiping Qin, Guanshi Qin. Progress on Mid-Infrared Raman Lasers Based on Special Glass Fibers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101004 Copy Citation Text show less
    References

    [1] Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 445, 627-630(2007).

    [2] Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photonics, 3, 99-102(2009).

    [3] Lin Z Y, Jia X Y, Wang C L et al. Ionization suppression of diatomic molecules in an intense midinfrared laser field[J]. Physical Review Letters, 108, 223001(2012).

    [4] Xie K, Cao Y. Research on the design and implementation of long-distance infrared laser wireless communication system[J]. Digital Technology and Application, 41(2016).

    [5] Taccheo S. Fiber lasers for medical diagnostics and treatments: state of the art, challenges and future perspectives[J]. Proceedings of SPIE, 10058, 1005808(2017).

    [6] Qian L J. Development and integration of wide tuning mid infrared femtosecond and narrow band long pulse laser devices[J]. Infrared and Laser Engineering, 35, 43(2006).

    [7] Deng Y, Zhu Q H, Zeng X M et al. The generation and recent progress of ultrashort mid-infrared pulse[J]. Laser & Optoelectronics Progress, 43, 21-26(2006).

    [8] Yu Z J, Han H N, Wei Z Y. Progress in dual-comb spectroscopy[J]. Physics, 43, 460-467(2014).

    [9] Chen L Z, Wen S C. Recent advances and methods of optical parametric generation and amplification for tunable ultra-short mid-infrared pulse[J]. Laser & Optoelectronics Progress, 48, 081902(2011).

    [10] Meng D D, Zhang H B, Li M S et al. Laser technology for direct IR countermeasure system[J]. Infrared and Laser Engineering, 47, 1105009(2018).

    [11] Li S S, Yan X S. Research on mid-infrared laser source in laser countermeasure system and key technology[J]. Electro-Optic Technology Application, 33, 19-23(2018).

    [12] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [13] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [14] Jia S J, Jia Z X, Yao C F et al. 2875 nm lasing from Ho3+-doped fluoroindate glass fibers[J]. IEEE Photonics Technology Letters, 30, 323-326(2018).

    [15] Jia S J, Jia Z X, Yao C F et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Physics, 28, 015802(2018).

    [16] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).

    [17] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [18] Agrawal G P[M]. Nonlinear fiber optics(2013).

    [19] Zhang L, Liu C, Jiang H W et al. A 1.3 kW Raman fiber laser[C], FF4B.1(2014).

    [20] Glick Y, Shamir Y, Aviel M et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement[J]. Optics Letters, 43, 4755-4758(2018).

    [21] Zhang L, Dong J Y, Feng Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1400106(2018).

    [22] Jiang H W, Zhang L, Feng Y. Silica-based fiber Raman laser at >2.4 μm[J]. Optics Letters, 40, 3249-3252(2015).

    [23] Bernier M, Fortin V, El-Amraoui M et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 39, 2052-2055(2014).

    [24] Fortin V, Bernier M, Faucher D et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm[J]. Optics Express, 20, 19412-19419(2012).

    [25] Zhu G W, Geng L X, Zhu X S et al. Towards ten-watt-level 3-5 μm Raman lasers using tellurite fiber[J]. Optics Express, 23, 7559-7573(2015).

    [26] Ni C Q, Gao W Q, Chen X C et al. Theoretical investigation on mid-infrared cascaded Raman fiber laser based on tellurite fiber[J]. Applied Optics, 56, 9171-9178(2017).

    [27] Yao T F, Huang L J, Zhou P et al. Power scaling on tellurite glass Raman fibre lasers for mid-infrared applications[J]. High Power Laser Science and Engineering, 6, e24(2018).

    [28] Xu M R, Yu F, Knight J. Mid-infrared 1 W hollow-core fiber gas laser source[J]. Optics Letters, 42, 4055-4058(2017).

    [29] Cui Y L, Huang W, Wang Z F et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers[J]. Optica, 6, 951-954(2019).

    [30] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [31] Aghbolagh F B A, Nampoothiri V, Debord B et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm[J]. Optics Letters, 44, 383-386(2019).

    [32] Wang Z F, Huang W, Li Z X et al. Progress and prospects of fiber gas laser sources (Ⅰ): Based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 0401009(2021).

    [33] Tang Y X, Wright L G, Charan K et al. Generation of intense 100 fs solitons tunable from 2 μm to 4.3 μm in fluoride fiber[J]. Optica, 3, 948-951(2016).

    [34] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).

    [35] Dudley J M, Taylor J R[M]. Supercontinuum generation in optical fibers(2009).

    [36] Toth L M, Quist A S, Boyd G E. Raman spectra of zirconium(IV) fluoride complex ions in fluoride melts and polycrystalline solids[J]. The Journal of Physical Chemistry, 77, 1384-1388(1973).

    [37] Mori A. Tellurite-based fibers and their applications to optical communication networks[J]. Journal of the Ceramic Society of Japan, 116, 1040-1051(2008).

    [38] Aggarwal I D, Sanghera J S. Development and applications of chalcogenide glass optical fibers at NRL[J]. Journal of Optoelectronics and Advanced Materials, 4, 665-678(2002).

    [39] Xia C N, Xu Z, Islam M N et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 422-434(2009).

    [40] O'Donnell M D, Richardson K, Stolen R et al. Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization[J]. Journal of the American Ceramic Society, 90, 1448-1457(2007).

    [41] Stuart B C, Feit M D, Herman S et al. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B, 13, 459-468(1996).

    [42] Feng Y[M]. Raman Fiber Lasers(2017).

    [43] Li Z R, Li N, Yao C F et al. Tunable mid-infrared Raman soliton generation from 1.96 μm to 2.82 μm in an all-solid fluorotellurite fiber[J]. AIP Advances, 8, 115001(2018).

    [44] Jackson S D, Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 88, 221106(2006).

    [45] Bernier M, El-Amraoui M, Couillard J F et al. Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm[J]. Optics Letters, 37, 3900-3902(2012).

    [46] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 38, 127-129(2013).

    [47] Peng X F, Zhang P Q, Wang X S et al. Modeling and simulation of a mid-IR 4.3 μm Raman laser in chalcogenide glass fibers[J]. OSA Continuum, 2, 2281-2292(2019).

    [48] Fortin V, Bernier M, Carrier J et al. Fluoride glass Raman fiber laser at 2185 nm[J]. Optics Letters, 36, 4152-4154(2011).

    [49] Luo H Y, Li J F, Li J et al. Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser[J]. IEEE Photonics Journal, 5, 2700211(2013).

    [50] Wang Y, Luo Z Q, Xiong F F et al. Numerical optimization of 35 μm mid-infrared ZBLAN fiber Raman lasers[J]. Laser & Optoelectronics Progress, 51, 061405(2014).

    [51] Liu L, Qin G S, Tian Q J et al. Numerical investigation of mid-infrared Raman soliton source generation in endless single mode fluoride fibers[J]. Journal of Applied Physics, 115, 163102(2014).

    [52] Duval S, Gauthier J C, Robichaud L R et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 μm to 3.6 μm[J]. Optics Letters, 41, 5294-5297(2016).

    [53] Mori A, Masuda H, Shikano K et al. Ultra-wide-band tellurite-based fiber Raman amplifier[J]. Journal of Lightwave Technology, 21, 1300-1306(2003).

    [54] Qin G S, Liao M S, Suzuki T et al. Widely tunable ring-cavity tellurite fiber Raman laser[J]. Optics Letters, 33, 2014-2016(2008).

    [55] Liu L, Tian Q J, Liao M S et al. All-optical control of group velocity dispersion in tellurite photonic crystal fibers[J]. Optics Letters, 37, 5124-5126(2012).

    [56] Koptev M Y, Anashkina E A, Andrianov A V et al. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber[J]. Optics Letters, 40, 4094-4097(2015).

    [57] Yao C F, Zhao Z P, Jia Z X et al. Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber[J]. Applied Physics Letters, 109, 101102(2016).

    [58] Yao C F. Design and preparation of fluorotellurite glass fibers and their application in mid-infrared supercontinuum generation[D], 81-89(2018).

    [59] Guo X H, Li Z R, Jiao Y D et al. A shower of mid-infrared Raman solitons at designed wavelength of~3 μm from a tapered fluorotellurite fiber[J]. Laser Physics, 31, 095103(2021).

    [60] Li Z R, Yao C F, Jia Z X et al. Broadband supercontinuum generation from 600 nm to 5400 nm in a tapered fluorotellurite fiber pumped by a 2010 nm femtosecond fiber laser[J]. Applied Physics Letters, 115, 091103(2019).

    [61] Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser[J]. Chinese Journal of Lasers, 46, 0508006(2019).

    [62] Li Z R, Jia Z X, Yao C F et al. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers[J]. Optics Letters, 45, 1882-1885(2020).

    Zhixu Jia, Xiaohui Guo, Yadong Jia, Weiping Qin, Guanshi Qin. Progress on Mid-Infrared Raman Lasers Based on Special Glass Fibers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101004
    Download Citation