• Photonics Research
  • Vol. 11, Issue 12, 2020 (2023)
Lu He1、2, Xijie Li1、2, Jie Yang1、2, Longjie Jiang1、2, Qian Liu1、2、3, and Ling Fu1、2、4、5、6、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3School of Biomedical Engineering, Hainan University, Haikou 570228, China
  • 4Department of Physics, School of Science, Hainan University, Haikou 570228, China
  • 5Optics Valley Laboratory, Wuhan 430074, China
  • 6Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.499747 Cite this Article Set citation alerts
    Lu He, Xijie Li, Jie Yang, Longjie Jiang, Qian Liu, Ling Fu. Super-simplified fiber scanner for cellular-resolution endoscopic imaging[J]. Photonics Research, 2023, 11(12): 2020 Copy Citation Text show less
    References

    [1] H.-C. Park, H. Guan, A. Li, Y. Yue, M.-J. Li, H. Lu, X. Li, X. Li. High-speed fiber-optic scanning nonlinear endomicroscopy for imaging neuron dynamics in vivo. Opt. Lett., 45, 3605-3608(2020).

    [2] C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, E. J. Seibel. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J. Biophoton., 3, 385-407(2010).

    [3] Y. Wang, Z. Li, X. Liang, L. Fu. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy. Opt. Express, 24, 19949-19960(2016).

    [4] D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, C. Xu. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proc. Natl. Acad. Sci. USA, 108, 17598-17603(2011).

    [5] T. Wu, L. Zhang, J. Wang, W. Huo, Y. Lu, C. He, Y. Liu. Miniaturized precalibration-based Lissajous scanning fiber probe for high speed endoscopic optical coherence tomography. Opt. Lett., 45, 2470-2473(2020).

    [6] F. Helmchen, M. S. Fee, D. W. Tank, W. Denk. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron, 31, 903-912(2001).

    [7] J. Im, Y. Chang, C. Song. Modified phase-offset-driven Lissajous scanning endomicroscopy with a polyimide-film-based frequency separator. IEEE-ASME Trans. Mechatron., 27, 4829-4839(2022).

    [8] H. Mansoor, H. Zeng, I. T. Tai, J. Zhao, M. Chiao. A handheld electromagnetically actuated fiber optic raster scanner for reflectance confocal imaging of biological tissues. IEEE Trans. Biomed. Eng., 60, 1431-1438(2013).

    [9] J. Yao, T. Peng, B. Sun, H. Zhang, M. Zhao, B. Dai, H. Liu, G. Ding, R. Sawada, Z. Yang. A single-fiber endoscope scanner probe utilizing two-degrees-of-freedom (2DOF) high-order resonance to realize larger scanning angle. IEEE Trans. Compon. Pack. Manuf. Technol., 9, 2332-2340(2019).

    [10] Y.-H. Seo, K. Hwang, K.-H. Jeong. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Opt. Express, 26, 4780-4785(2018).

    [11] P. S.-P. Thong, M. Olivo, K.-W. Kho, K. Mancer, W. Zheng, M. R. Harris, K.-C. Soo. Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity. J. Biomed. Opt., 12, 014007(2007).

    [12] T. Wang, J. Jiang, K. Liu, S. Wang, P. Niu, Y. Liu, T. Liu. Flexible minimally invasive coherent anti-Stokes Raman spectroscopy (CARS) measurement method with tapered optical fiber probe for single-cell application. PhotoniX, 3, 11(2022).

    [13] T. Wu, Z. Ding, K. Wang, M. Chen, C. Wang. Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography. Opt. Express, 17, 13819-13829(2009).

    [14] R. Khayatzadeh, F. Çivitci, O. Ferhanoğlu, H. Urey. Scanning fiber microdisplay: design, implementation, and comparison to MEMS mirror-based scanning displays. Opt. Express, 26, 5576-5590(2018).

    [15] Z. Li, Z. Yang, L. Fu. Scanning properties of a resonant fiber-optic piezoelectric scanner. Rev. Sci. Instrum., 82, 123707(2011).

    [16] Q. Liu, X. Liang, W. Qi, Y. Gong, H. Jiang, L. Xi. Biomedical microwave-induced thermoacoustic imaging. J. Innov. Opt. Health Sci., 15, 2230007(2022).

    [17] J. Li, Y. Ma, T. Zhang, K. K. Shung, B. Zhu. Recent advancements in ultrasound transducer: from material strategies to biomedical applications. BME Front., 2022, 9764501(2022).

    [18] X. Zhang, C. Duan, L. Liu, X. Li, H. Xie. A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage. Sens. Actuators A Phys., 233, 239-245(2015).

    [19] H.-C. Park, Y.-H. Seo, K. Hwang, J.-K. Lim, S. Z. Yoon, K.-H. Jeong. Micromachined tethered silicon oscillator for an endomicroscopic Lissajous fiber scanner. Opt. Lett., 39, 6675-6678(2014).

    [20] R. Khayatzadeh, O. Ferhanoğlu, F. Çivitci. Unwarped Lissajous scanning with polarization maintaining fibers. IEEE Photonics Technol. Lett., 29, 1623-1626(2017).

    [21] Z. Li, L. Fu. Note: a resonant fiber-optic piezoelectric scanner achieves a raster pattern by combining two distinct resonances. Rev. Sci. Instrum., 83, 086102(2012).

    [22] Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, E. J. Seibel. A nonlinear state-space model of a resonating single fiber scanner for tracking control: theory and experiment. J. Dyn. Syst. Meas. Control., 126, 88-101(2004).

    [23] D. Do, H. Yoo, D.-G. Gweon. Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator. J. Biomed. Opt., 19, 066010(2014).

    [24] T. Meinert, N. Weber, H. Zappe, A. Seifert. Varifocal MOEMS fiber scanner for confocal endomicroscopy. Opt. Express, 22, 31529-31544(2014).

    [25] M. H. H. Mokhtar, R. R. A. Syms. Tailored fibre waveguides for precise two-axis Lissajous scanning. Opt. Express, 23, 20804-20811(2015).

    [26] K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, K.-H. Jeong. Frequency selection rule for high definition and high frame rate Lissajous scanning. Sci. Rep., 7, 14075(2017).

    [27] L. Huo, J. Xi, Y. Wu, X. Li. Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Opt. Express, 18, 14375-14384(2010).

    [28] K. M. Joos, J.-H. Shen. Miniature real-time intraoperative forward-imaging optical coherence tomography probe. Biomed. Opt. Express, 4, 1342-1350(2013).

    [29] S. R. Samuelson, L. Wu, J. Sun, S. Choe, B. S. Sorg, H. Xie. A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography. J. Microelectromech. Syst., 21, 1291-1302(2012).

    [30] J. M. Yang, C. Favazza, J. Yao, R. Chen, Q. Zhou, K. K. Shung, L. V. Wang. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus. PLoS ONE, 10, e0120269(2015).

    [31] X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, L. Song. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter. PLoS ONE, 9, e92463(2014).

    [32] A. Neprokin, C. Broadway, T. Myllylä, A. Bykov, I. Meglinski. Photoacoustic imaging in biomedicine and life sciences. Life, 12, 588(2022).

    [33] D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, K.-H. Jeong. Lissajous scanning two-photon endomicroscope for in vivo tissue imaging. Sci. Rep., 9, 3560(2019).

    [34] A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, P. M. Delaney. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc., 62, 686-695(2005).

    [35] F. Acerbi, B. Pollo, C. De Laurentis, F. Restelli, J. Falco, I. G. Vetrano, M. Broggi, M. Schiariti, I. Tramacere, P. Ferroli, F. DiMeco. Ex vivo fluorescein-assisted confocal laser endomicroscopy (CONVIVO® System) in patients with glioblastoma: results from a prospective study. Front. Oncol., 10, 606574(2020).

    [36] M. Lee, G. Li, H. Li, X. Duan, M. B. Birla, T.-S. Chang, D. K. Turgeon, K. R. Oldham, T. D. Wang. Confocal laser endomicroscope with distal MEMS scanner for real-time histopathology. Sci. Rep., 12, 20155(2022).

    [37] H. Li, Z. Hao, J. Huang, T. Lu, Q. Liu, L. Fu. 500 μm field-of-view probe-based confocal microendoscope for large-area visualization in the gastrointestinal tract. Photonics Res., 9, 1829-1841(2021).

    [38] A. A. Shabana. Theory of Vibration: An Introduction(1996).

    [39] W. T. Thomson, M. D. Dahleh. Theory of Vibration with Applications(1997).

    [40] O. A. Bauchau, J. I. Craig. Structural Analysis: With Applications to Aerospace Structures(2009).

    [41] T. H. G. Megson. Structural and Stress Analysis(2019).

    [42] N. P. Bansal, R. H. Doremus. Handbook of Glass Properties(1986).

    [43] B. Hopf, B. Fischer, M. Lindner, A. W. Koch, J. Roths. A three-dimensional-FEM model with experimentally determined material parameters of an FBG sensor element in a panda-type fiber. J. Lightwave Technol., 36, 1076-1083(2018).

    [44] R. Guan, F. Zhu, Z. Gan, D. Huang, S. Liu. Stress birefringence analysis of polarization maintaining optical fibers. Opt. Fiber Technol., 11, 240-254(2005).

    Lu He, Xijie Li, Jie Yang, Longjie Jiang, Qian Liu, Ling Fu. Super-simplified fiber scanner for cellular-resolution endoscopic imaging[J]. Photonics Research, 2023, 11(12): 2020
    Download Citation