• High Power Laser Science and Engineering
  • Vol. 11, Issue 6, 06000e82 (2023)
Luis Sánchez-Tejerina1,2,*, Rodrigo Martín-Hernández1, Rocío Yanes3,4, Luis Plaja1,4..., Luis López-Díaz3,4 and Carlos Hernández-García1,4|Show fewer author(s)
Author Affiliations
  • 1Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, Spain
  • 2Present address: Departamento de Electricidad y Electrónica, Universidad de Valladolid, Valladolid, Spain
  • 3Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, Spain
  • 4Unidad de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, Spain
  • show less
    DOI: 10.1017/hpl.2023.71 Cite this Article Set citation alerts
    Luis Sánchez-Tejerina, Rodrigo Martín-Hernández, Rocío Yanes, Luis Plaja, Luis López-Díaz, Carlos Hernández-García, "All-optical nonlinear chiral ultrafast magnetization dynamics driven by circularly polarized magnetic fields," High Power Laser Sci. Eng. 11, 06000e82 (2023) Copy Citation Text show less

    Abstract

    Ultrafast laser pulses provide unique tools to manipulate magnetization dynamics at femtosecond timescales, where the interaction of the electric field usually dominates over the magnetic field. Recent proposals using structured laser beams have demonstrated the possibility to produce regions where intense oscillating magnetic fields are isolated from the electric field. In these conditions, we show that technologically feasible tesla-scale circularly polarized high-frequency magnetic fields induce purely precessional nonlinear magnetization dynamics. This fundamental result not only opens an avenue in the study of laser-induced ultrafast magnetization dynamics, but also sustains technological implications as a route to promote all-optical non-thermal magnetization dynamics both at shorter timescales – towards the sub-femtosecond regime – and at THz frequencies.
    B(t)=b(t)eiωt+b(t)eiωt, ((1))

    View in Article

    b(t)=B02F(t)(cosθ0u^x+sinθ0eiϕ0u^z), ((2))

    View in Article

    (1+α2)dmdt=γm×Beffαm×(m×Beff), ((3))

    View in Article

    dmydtuy=γm×B, ((4))

    View in Article

    my(t)uy=γ0tm(τ)×Bdτ. ((5))

    View in Article

    mj(t)=qmqj(t)eiqωt,j=x,y,z. ((6))

    View in Article

    q[dmq(t)dt+iqωmq(t)]eiqωt=+γ2[q0tmq1(τ)×b(τ)eiqωτdτ]×B(t)+γ2[q0tmq+1(τ)×b(τ)eiqωτdτ]×B(t). ((7))

    View in Article

    dm0(t)dt=2iγ2ωm0(t)×[b(t)×b(t)]. ((8))

    View in Article

    Bd=γ2ωsinϕ0(Bx×Bz). ((9))

    View in Article

    Δθ=γ[γ2ωsinϕ0(BxBz)]tp. ((10))

    View in Article

    Luis Sánchez-Tejerina, Rodrigo Martín-Hernández, Rocío Yanes, Luis Plaja, Luis López-Díaz, Carlos Hernández-García, "All-optical nonlinear chiral ultrafast magnetization dynamics driven by circularly polarized magnetic fields," High Power Laser Sci. Eng. 11, 06000e82 (2023)
    Download Citation