[1] BAIERL D, PANCHERI L, SCHMIDT M, et al. A hybrid CMOS-imager with a solution-processable polymer as photoactive layer[J]. Nature Communications, 2012, 3(6): 1175-1182.
[2] LYONS D M, ARMIN A, STOLTERFOHT M, et al. Narrow band green organic photodiodes for imaging[J]. Organic Electronics, 2014, 15(11): 2903-2911.
[3] LEEM D S, LEE K H, KWON Y N, et al. Low dark current inverted organic photodetectors employing MoOx∶Al cathode interlayer[J]. Organic Electronics, 2015, 24: 176-181.
[4] JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.
[5] HAMMOND W T, XUE J. Organic heterojunction photodiodes exhibiting low voltage, imaging-speed photocurrent gain[J]. Applied Physics Letters, 2010, 97(7): 180-182.
[6] NIE Ri-ming, ZHAO Ze-jia, DENG Xian-yu. Roles of electrode interface on the performance of organic photodetectors[J]. Synthetic Metals, 2017, 227: 163-169.
[7] CHUANG Shao-tang, CHIEN Shang-chieh, CHEN Fang-chung. Extended spectral response in organic photomultiple photodetectors using multiple near-infrared dopants[J]. Applied Physics Letters, 2012, 100(1): 9-11.
[8] LI Ling-liang, ZHANG Fu-jun, WANG Wen-bin, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%[J]. Applied Materials & Interfaces, 2015, 7(10): 5890-5897.
[9] WANG Yue, ZHU Li-jie, HU Yu-feng, et al. High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode[J]. Optics Express, 2017, 25(7): 7719-7729.
[10] NIE Ri-ming, DENG Xian-yu, LEI Feng, et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias[J]. Small, 2017, 13(24): 1603260.
[11] LI Qing, LI Hai-qiang, ZHAO-juan, et al. Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cell[J]. Acta Physica Sinica, 2013, 62(12): 128803.
[12] LI Wen-hai, LI Shang-bin, DUAN Lian, et al. Squarylium and rubrene based filterless narrowband photodetectors for an all-organic two-channel visible light communication system[J]. Organic Electronics, 2016, 37: 346-351.
[13] VALOUCH S, HNES C, KETTLITZ S W, et al. Solution processed small molecule organic interfacial layers for low dark current polymer photodiodes[J]. Organic Electronics, 2012, 13(11): 2727-2732.
[14] LI Ai-yuan, MIAO Xin-rui, DENG Xian-yu. Strong electron acceptor additive for achieving efficient polymer solar cells with P3HT: PCBM films by a quick drying process[J]. Synthetic Metals, 2013, 168(1): 43-47.
[15] WEI Guo-dan, WANG Si-yi, RENSHAW K, et al. Solution-processed squaraine bulk heterojunction photovoltaic cells[J]. ACS Nano, 2010, 4(4): 1927-1934.
[16] GAO Yong-li. Surface analytical studies of interfaces in organic semiconductor devices[J]. Materials Science & Engineering R, 2010, 68(3): 39-87.
[17] LI Ling-liang, ZHANG Fu-jun, WANG Jian, et al. Achieving EQE of 16,700% in P3HT∶PC71BM based photodetectors by trap-assisted photomultiplication[J]. Scientific Reports, 2015, 5: 9181.
[18] MIAO Jian-li, ZHANG Fu-jun, LIN Yu-ze, et al. Highly sensitive organic photodetectors with tunable spectral response under bi-directional bias[J]. Advanced Optical Materials, 2016, 4(11): 1711-1717.
[19] HUANG Wei, MI Bao-xiu, GAO Zhi-qiang. Organic electronics[M]. Beijing: Science Press, 2011: 144-235.
[20] FANG Yan-jun, GUO Fa-wen, XIAO Zheng-guo, et al. Large gain, low noise nanocomposite ultraviolet photodetectors with a linear dynamic range of 120 dB[J]. Advanced Optical Materials, 2014, 2(4): 348-353.
[21] SHIN H, KIM J, LEE C. Ternary bulk heterojunction for wide spectral range organic photodetectors[J]. Journal of the Korean Physical Society, 2017, 71(4): 196-202.