[1] XING C, HAO Y, XIA A, et al. Polypyrrole/Fe3O4 nanocomposites anchored on graphene toward efficient electromagnetic wave absorption performance[J]. Synthetic Metals, 2024, 306: 117628.
[2] STEFANIUK D, SOBTKA M, JARCZEWSKA K, et al. Microstructure properties of cementitious mortars with selected additives for electromagnetic waves absorbing applications[J]. Cement and Concrete Composites, 2022, 134: 104732.
[3] SHI Y, JING H, LIU B, et al. Electromagnetic (EM) wave absorption properties of cementitious building composites containing MnZn ferrite: preferable effective bandwidth and thickness via iron and graphite addition[J]. Journal of Magnetism and Magnetic Materials, 2022, 560: 169555.
[4] LIU H, YANG Q, XIAO H, et al. Influence and mechanism of ultra-high molecular weight polyethylene on mechanical and electromagnetic shielding properties of alkali-activated composite mortar based on magnesium slag, blast-furnace slag and silica fume[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112437.
[11] FAROOQ I, ISLAM M U, DANISH M, et al. Synergistic effects of Li-based ferrite and graphene oxide in microwave absorption applications[J]. Synthetic Metals, 2024: 117674.
[14] QIN M, ZHANG L, WU H. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9(10): 2105553.
[15] SAOTOME H, AZUMA K, KIZUKA H, et al. Properties of dynamic magnetic loss of ferrite[J]. AIP Advances, 2018, 8(5): 1157.
[17] ZHAO Y, WANG W, WANG J, et al. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance[J]. Carbon, 2021, 173: 1059-1072.