• Acta Photonica Sinica
  • Vol. 49, Issue 10, 1014002 (2020)
Yang YANG, Chao LI, and Ji-hong ZHAO
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China
  • show less
    DOI: 10.3788/gzxb20204910.1014002 Cite this Article
    Yang YANG, Chao LI, Ji-hong ZHAO. Research on Fabrication and Optoelectronic Properties of Surface Modified Silicon by Ultrafast Laser Pulse[J]. Acta Photonica Sinica, 2020, 49(10): 1014002 Copy Citation Text show less
    References

    [1] C HNATOVSKY, R S TAYLOR, P P RAJEEV. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Applied Physics Letters, 87, 14104(2005).

    [2] Ji-hong ZHAO, Chun-hao LI, Jun-jie XU. Surface modification of nanostructured ZnS by femtosecond laser pulsing. Applied Surface Science, 293, 332-335(2014).

    [3] A Y VOROBYEV, C GUO. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Physical Review B, 72, 195422(2005).

    [4] A WECK, T H R CRAWFORD, D S WILKINSON. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses. Applied Physics A, 90, 537-543(2008).

    [5] Yong-guang HUANG, Shi-bing LIU, Wei LI. Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium. Optics Express, 17, 20756-20761(2009).

    [6] A BOROWIEC, H K HAUGEN. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Applied Physics Letters, 82, 4462-4464(2003).

    [7] F COSTACHE, S KOUTEVA-ARGUIROVA, J REIF. Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation. Applied Physics A, 79, 1429-1432(2004).

    [8] R LE HARZIC, H SCHUCK, D SAUER. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Optics Express, 13, 6651-6656(2005).

    [9] J BONSE, M MUNZ, H STURM. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. Journal of Applied Physics, 97, 13538(2005).

    [10] T G KIM, J M WARRENDER, M J AZIZ. Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur. Applied Physics Letters, 88, 241902(2006).

    [11] A KOHNO, S CHARNVANICHBORIKARN. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting. Journal of Applied Physics, 107, 123506(2010).

    [12] I UMEZU, J M WARRENDER, S CHARNVANICHBORIKARN. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. Journal of Applied Physics, 113, 213501(2013).

    [13] S H PAN, D RECHT, S CHARNVANICHBORIKARN. Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens. Applied Physics Letters, 98, 121913(2011).

    [14] W T HSIAO, S F TSENG, K C HUANG. Pulsed Nd:YAG laser treatment of monocrystalline silicon substrate, 56, 223-231(2011).

    [15] S BINETTI, A LE DONNE, A ROLFI. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths. Applied Surface Science, 371, 196-202(2016).

    [16] S SARBADA, Zhi-feng HUANG, Y C SHIN. Low-reflectance laser-induced surface nanostructures created with a picosecond laser. Applied Physics A, 122, 1-10(2016).

    [17] A J PEDRAZA, J D FOWLKES, D H LOWNDES. Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation. Applied Physics Letters, 74, 2322-2324(1999).

    [18] G MASINI, L COLACE, G ASSANTO. 55 μm. Applied Physics Letters,, 82, 2524-2526(2003).

    [19] P R CHIDAMBARAM, C BOWEN, S CHAKRAVARTHI. Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing. IEEE Transactions on Electron Devices, 53, 944-964(2006).

    [20] S REGGIANI, E GNANI, A GNUD. Low-field electron mobility model for ultrathin-body SOI and double-gate MOSFETs with extremely small silicon thicknesses. IEEE Transactions on Electron Devices, 54, 2204-2212(2007).

    [21] R J FINLAY, C WU. Microstructuring of silicon with femtosecond laser pulses. Applied Physics Letters, 73, 1673-1675(1998).

    [22] C WU, C H CROUCH, L ZHAO. Near-unity below-band-gap absorption by microstructured silicon. Applied Physics Letters, 78, 1850-1852(2001).

    [23] B R TULL, M T WINKLER, E MAZUR. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon. Applied Physics A, 96, 327-334(2009).

    [24] Ji-hong ZHAO, Chun-hao LI, Qi-dai CHEN. Femtosecond laser direct writing assisted nonequilibriumly doped silicon n+-p photodiodes for light sensing. IEEE Sensors Journal, 15, 4259-4263(2015).

    [25] Ji-hong ZHAO, Chun-hao LI, Xian-bin LI. NIR photodetector based on nanosecond laser-modified silicon. IEEE Transactions on Electron Devices, 65, 4905-4909(2018).

    [26] C H CROUCH, J E CAREY, J M WARRENDER. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Applied Physics Letters, 84, 1850-1852(2004).

    [27] R J YOUNKIN. Surface studies and microstructure fabrication using femtosecond laser pulses(2001).

    [28] M J SHER, M T WINKLER, E MAZUR. Pulsed-laser hyperdoping and surface texturing for photovoltaics. MRS Bulletin, 36, 439-455(2011).

    [29] K C PHILLIPS, H H GANDHI, E MAZUR. Ultrafast laser processing of materials: A review. Advances in Optics and Photonics, 7, 684-712(2015).

    [30] 28](4). http://www.cmxr.com/Education/Long.html

    [31] Jing YANG, Fang-fang LUO. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light: Science & Applications, 3, e185(2014).

    [32] Chun-hao LI, Ji-hong ZHAO, Xin-yue YU. Fabrication of black silicon with thermostable infrared absorption by femtosecond laser. IEEE Photonics Journal, 8, 1-9(2016).

    [33] B R TULL, M T WINKLER, E MAZUR. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon. Applied Physics A, 96, 327-334(2016).

    [34] W B JACKSON, N M AMER. Direct measurement of gap-state absorption in hydrogenated amorphous silicon by photothermal deflection spectroscopy. Physical Review B, 25, 5559-5562(1982).

    [35] Chun-hao LI, Ji-hong ZHAO, Qi-dai CHEN. Infrared absorption of femtosecond laser textured silicon under vacuum. IEEE Photonics Technology Letters, 27, 1481-1484(2015).

    [36] A BARHDADI, B HARTIT, J C MULLER. Active defects generated in silicon by laser doping process. African Review Physics, 6, 229-238(2011).

    [37] B K NEWMAN, M J SHER, E MAZUR. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon. Applied Physics Letters, 98, 251905(2011).

    [38] Ji-hong ZHAO, Xian-bin LI, Qi-dai CHEN. Ultrafast laser induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices. Materials Today Nano, 11, 100078(2020).

    [39] Chao LI, Ji-hong ZHAO, Xi CHEN. Investigation of the structure and optical absorption of silicon coated with a chromium film after femtosecond laser irradiation, 35, 015019(2020).

    CLP Journals

    [1] Yanli LI, Xin JIA, Kaiqiang CAO, Fengzhuo ZHANG, Long CHEN, Tianqing JIA. Highly Efficient Fabrication of Superhydrophilic Structures on Silicon Surface by the Interference of Two Femtosecond Laser Beams[J]. Acta Photonica Sinica, 2021, 50(6): 100

    Yang YANG, Chao LI, Ji-hong ZHAO. Research on Fabrication and Optoelectronic Properties of Surface Modified Silicon by Ultrafast Laser Pulse[J]. Acta Photonica Sinica, 2020, 49(10): 1014002
    Download Citation