• Photonics Research
  • Vol. 2, Issue 1, 15 (2014)
Drew DeJarnette1, Justin Norman2, and D. Keith Roper1,2,*
Author Affiliations
  • 1Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • 2Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • show less
    DOI: 10.1364/PRJ.2.000015 Cite this Article Set citation alerts
    Drew DeJarnette, Justin Norman, D. Keith Roper, "Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices," Photonics Res. 2, 15 (2014) Copy Citation Text show less
    References

    [1] R. W. Wood. Anomalous diffraction gratings. Phys. Rev., 48, 928-936(1935).

    [2] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124, 1866-1878(1961).

    [3] W. L. Bragg. The specular reflection of X-rays. Nature, 90, 410(1912).

    [4] P. Blake, W. Ahn, D. K. Roper. Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization. Langmuir, 26, 1533-1538(2010).

    [5] W. Ahn, P. Blake, J. Schulz, M. E. Ware, D. K. Roper. Fabrication of regular arrays of Au nanospheres by thermal transformation of electroless-plated films. J. Vac. Sci. Technol. B, 28, 638-642(2010).

    [6] G. Mie. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys., 25, 377-445(1908).

    [7] P. Blake, J. Obermann, B. Harbin, D. K. Roper. Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors. IEEE Sens. J., 11, 3332-3340(2011).

    [8] D. K. Roper, W. Ahn, B. Taylor, Y. D’Asen. Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures. IEEE Sens. J., 10, 531-540(2010).

    [9] M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, M. F. Limonov. Fano resonance between Mie and Bragg dcattering in photonic crystals. Phys. Rev. Lett., 103, 023901(2009).

    [10] A. Artar, A. A. Yanik, H. Altug. Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett., 11, 3694-3700(2011).

    [11] B. Gallinet, O. J. F. Martin. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B, 83, 235427(2011).

    [12] B. Gallinet, O. J. F. Martin. Relation between near-field and far-field properties of plasmonic Fano resonances. Opt. Express, 19, 22167-22175(2011).

    [13] B. Gallinet, O. J. F. Martin. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano, 5, 8999-9008(2011).

    [14] A. Christ, Y. Ekinci, H. H. Solak, N. Gippius, S. G. Tikhodeev, O. J. F. Martin. Controlling the Fano interference in a plasmonic lattice. Phys. Rev. B, 76, 201405(2007).

    [15] Y. Francescato, V. Giannini, S. Maier. Plasmonic systems unveiled by Fano resonances. ACS Nano, 6, 1830-1838(2012).

    [16] F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, S. Maier. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano, 3, 643-652(2009).

    [17] Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, Z. Zhang. Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission. Nano Lett., 11, 49-55(2011).

    [18] N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett., 9, 1663-1667(2009).

    [19] T. G. Habteyes, S. Dhuey, S. Cabrini, P. J. Schuck, S. R. Leone. Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett., 11, 1819-1825(2011).

    [20] B. luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [21] V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, S. A. Maier. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett., 11, 2835-2840(2011).

    [22] S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, J. Gómez Rivas. Coupling bright and dark plasmonic lattice resonances. Phys. Rev. X, 1, 021019(2011).

    [23] S. H. Mousavi, A. B. Khanikaev, G. Shvets. Optical properties of Fano-resonant metallic metasurfaces on a substrate. Phys. Rev. B, 85, 155429(2012).

    [24] R. D. Artuso, G. W. Bryant. Hybrid quantum dot-metal nanoparticle systems: connecting the dots. Acta Phys. Pol. A, 122, 289-293(2012).

    [25] D. E. Chang, A. S. Sørensen, P. R. Hemmer, M. D. Lukin. Quantum optics with surface plasmons. Phys. Rev. Lett., 97, 053002(2006).

    [26] X. Lu, J. Han, W. Zhang. Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles. Appl. Phys. Lett., 92, 121103(2008).

    [27] S. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, K. Jeong. Enhancement of terahertz pulse emission by optical nanoantenna. ACS Nano, 6, 2026-2031(2012).

    [28] P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 41, 1578-1586(2008).

    [29] M. Hu, J. Chen, Z. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, Y. Xia. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev., 35, 1084-1094(2006).

    [30] R. B. Dunbar, H. C. Hessee, D. S. Lembke, L. Schmidt-Mende. Light-trapping plasmonic nanovoid arrays. Phys. Rev. B, 85, 035301(2012).

    [31] C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, C. T. Chan. Deep subwavelength Fabry–Perot-like resonances in a sandwiched reflection grating. Phys. Rev. B, 85, 235410(2012).

    [32] S. Linden, J. Kuhl, H. Giessen. Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys. Rev. Lett., 86, 4688-4691(2001).

    [33] N. N. Lal, H. Zhou, M. Hawkeye, J. K. Sinha, P. N. Bartlett, G. A. J. Amaratunga, J. J. Baumberg. Using spacer layers to control metal and semiconductor absorption in ultrathin solar cells with plasmonic substrates. Phys. Rev. B, 85, 245318(2012).

    [34] R. Catchpole, A. Polman. Plasmonic solar cells. Opt. Express, 16, 21793-21800(2008).

    [35] P. Offermans, M. C. Schaafsma, S. R. K. Rodrigue, Y. Zhang, M. Crego-Calama, S. H. Brongersma, J. Gomez Rivas. Universal scaling of the figure of merit of plasmonic sensors. ACS Nano, 5, 5151-5157(2011).

    [36] T. J. Davis, D. E. Gómez, K. C. Vernon. Interaction of molecules with localized surface plasmons in metallic nanoparticles. Phys. Rev. B, 81, 045432(2010).

    [37] H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, B. Yang. Fano resonance in (gold core)–(dielectric shell) nanostructures without symmetry breaking. Small, 8, 1503-1509(2012).

    [38] H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, H. Q. Lin. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates. ACS Nano, 5, 6754-6763(2011).

    [39] Y. Zhao, A. Alu. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B, 84, 205428(2011).

    [40] N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, N. I. Zheludev. Graphene in a photonic metamaterial. Opt. Express, 18, 8353-8359(2010).

    [41] D. DeJarnette, J. Norman, D. K. Roper. Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry. Appl. Phys. Lett., 101, 183104(2012).

    [42] D. DeJarnette, D. K. Roper, B. Harbin. Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays. J. Opt. Soc. Am. B, 29, 88-100(2012).

    [43] P. G. Etchegoin, E. C. Le Ru, M. Meyer. An analytic model for the optical properties of gold. J. Chem. Phys., 125, 164705(2006).

    [44] A. B. Evlyukhin, C. Reinhardt, U. Zywietz, B. N. Chichkov. Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B, 85, 245411(2012).

    [45] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668-677(2003).

    [46] Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett., 93, 181108(2008).

    [47] S. Zou, G. Schatz. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J. Chem. Phys., 121, 12606-12612(2004).

    [48] E. Simsek. Effective refractive index approximation and surface plasmon resonance modes of metal nanoparticle chains and arrays. PIERS Online, 5, 629-632(2009).

    [49] T. Jensen, L. Kelly, A. Lazarides, G. C. Schatz. Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J. Cluster Sci., 10, 295-317(1999).

    [50] Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun., 2, 579(2011).

    [51] S. F. Shi, X. Xu, D. C. Ralph, P. L. McEuen. Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. Nano Lett., 11, 1814-1818(2011).

    [52] A. Gopalakrishnan, M. Malerba, S. Tuccio, S. Panaro, E. Miele, M. Chirumamilla, S. Santoriello, C. Dorigoni, A. Giugni, R. P. Zaccaria, C. Liberale, F. De Angelis, L. Razzari, R. Krahne, A. Toma, G. Das, E. Di Fabrizio. Nanoplasmonic structures for biophotonic applications: SERS overview. Ann. Phys., 524, 620-636(2012).

    [53] B. Bai, X. Li, I. Vartiainen, A. Lehmuskero, G. Kang, J. Turunen, M. Kuittinen, P. Vahimaa. Anomalous complete opaqueness in a sparse array of gold nanoparticle chains. Appl. Phys. Lett., 99, 081911(2011).

    [54] T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, K. S. Novoselov. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun., 2, 458(2011).

    [55] F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris. Ultrafast graphene photodetector. Nat. Nanotechnol., 4, 839-843(2009).

    [56] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, F. H. L. Koppens. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol., 7, 363-368(2012).

    [57] Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas. Graphene-antenna sandwich photodetector. Nano Lett., 12, 3808-3813(2012).

    [58] C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem., Int. Ed., 49, 3014-3017(2010).

    [59] S. Mai, S. V. Syzranov, K. B. Efetov. Photocurrent in a visible-light graphene photodiode. Phys. Rev. B, 83, 033402(2011).

    [60] T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B, 79, 245430(2009).

    [61] A. Gutes, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro, R. Maboudian. Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale, 4, 438-440(2012).

    [62] Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, N. J. Halas. Plasmon-induced doping of graphene. ACS Nano, 6, 10222-10228(2012).

    [63] C. Y. Liu, K. Liang, C. C. Chang, Y. Tzeng. Effects of plasmonic coupling and electrical current on persistent photoconductivity of single-layer graphene on pristine and silver nanoparticle-coated SiO2/Si. Opt. Express, 20, 22934-22952(2012).

    CLP Journals

    [1] Xiaodan Huang, Chaogang Lou, Hao Zhang, Hua Yang, "Effects of different structural parameters and the medium environment on plasmonic lattice resonance formed by Ag nanospheres on SiO2 nanopillar arrays," Chin. Opt. Lett. 18, 033601 (2020)

    Drew DeJarnette, Justin Norman, D. Keith Roper, "Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices," Photonics Res. 2, 15 (2014)
    Download Citation