• Acta Physica Sinica
  • Vol. 68, Issue 11, 110701-1 (2019)
Jia-Hua Duan1、2 and Jia-Ning Chen1、2、3、4、*
Author Affiliations
  • 1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China
  • 4Songshan Lake Materials Laboratory, Dongguan 523808, China
  • show less
    DOI: 10.7498/aps.68.20190341 Cite this Article
    Jia-Hua Duan, Jia-Ning Chen. Recent progress of near-field studies of two-dimensional polaritonics[J]. Acta Physica Sinica, 2019, 68(11): 110701-1 Copy Citation Text show less

    Abstract

    Due to the capability of nanoscale manipulation of photons and tunability of light-matter interaction, polaritonics has attracted much attention in the modern physics. Compared with traditional noble metals, two-dimensional van der Waals materials provide an ideal platform for polaritons with high confinement and tunability. Recently, the development of scanning near-field optical microscopy has revealed various polaritons, thereby paving the way for further studying the quantum physics and nano-photonics. In this review paper, we summarize the new developments in two-dimensional polaritonics by near-field optical approach. According to the introduction of near-field optics and its basic principle, we show several important directions in near-field developments of two-dimensional polaritonics, including plasmon polaritons, phonon polaritons, exciton polaritons, hybridized polaritons, etc. In the final part, we give the perspectives in development of near-field optics.
    $\Delta x \cdot \Delta {k_x} \geqslant 2{\text{π}},$ (1)

    View in Article

    $\Delta {k_x} = {{{k}}_{\bf{1}}} - {{{k}}_{\bf{2}}} = 2k{\rm{sin}}\theta , $ (2)

    View in Article

    $ \begin{split} {E_{{\rm{total}}}} ={}& \mathop \sum \nolimits_n {K_n}{\rm{exp}}\left( {{\rm{i}}n\varOmega t} \right), \\ {K_n} ={}& {\sigma _n} + {\sigma _{{\rm{BG}}, n}}\;, \end{split} $ (3)

    View in Article

    ${u_n} = \alpha \mathop \sum \nolimits_{i \geqslant n} {K_{i - n}}K_i^* + K_{i - n}^*{K_i}, $ (4)

    View in Article

    $\begin{split}\, & {u_n}= \alpha \left( {{K_0}K_n^* + K_0^*{K_n}} \right) \\ \approx &\; \alpha \left[ {{\sigma _{{\rm{BG}}, 0}}\left( {\sigma _n^* + \sigma _{{\rm{BG}}, n}^*} \right) \!+\! \sigma _{{\rm{BG}}, 0}^*\left( {{\sigma _n} \!+\! {\sigma _{{\rm{BG}}, n}}} \right)} \right],\end{split}$(5)

    View in Article

    ${\sigma _{{\rm{BG}}, n}} \approx 0\quad\left( {n \geqslant 2} \right), $ (6)

    View in Article

    ${u_n} \approx \left( {{\sigma _{{\rm{BG}}, 0}}\sigma _n^* + \sigma _{{\rm{BG}}, 0}^*{\sigma _n}} \right), $ (7)

    View in Article

    ${E_{{\rm{total}}}} = {E_{{\rm{NF}}}} + {E_{{\rm{BG}}}} + {E_{{\rm{Ref}}}}.$ (8)

    View in Article

    ${E_{{\rm{Ref}}}} = A{\rm{exp}}\left[ {{\rm{i}}\gamma \sin \left( {Mt} \right) + {\rm{i}}{\varphi _{{\rm{Ref}}}}} \right], $ (9)

    View in Article

    $\begin{split} &{E_{{\rm{Ref}}}} = \mathop \sum \nolimits_m {A_m}\exp \left( {{\rm{i}}mMt} \right), \\ &{A_m} = A \cdot {{\rm{J}}_m}\left( \gamma \right){\rm{exp}}\left( {{\rm{i}}{\varphi _{{\rm{Ref}}}} + {\rm{i}}m\frac{\text{π}}{2}} \right),\end{split}$ (10)

    View in Article

    ${u_{n, m}} = \alpha \left( {{K_n}A_m^* + K_n^*{A_m}} \right), $ (11)

    View in Article

    ${u_{n, m}} = 2\alpha A{{\rm{J}}_m}\left( \gamma \right){s_{s, n}}{\rm{cos}}\left( {{\varphi _{s, n}} - {\varphi _{{\rm{Ref}}}} - m\frac{{\text{π}}}{2}} \right), $ (12)

    View in Article

    ${K_n} = k\left[ {{u_{n, j}}/{{\rm{J}}_i}\left( \gamma \right) + {\rm{i}}{u_{n, l}}/{{\rm{J}}_l}\left( \gamma \right)} \right], $ (13)

    View in Article

    ${s_n} = 2.16k\sqrt {u_{n, 1}^2 + u_{n, 2}^2} , $ (14)

    View in Article

    ${s_n} = 2.16k\sqrt {u_{n, 1}^2 + u_{n, 2}^2} , $ (15)

    View in Article

    $E_{{\rm{Det}}}^{\rm{S}} \propto {\alpha _x}{E_x}, $ (16)

    View in Article

    $E_{{\rm{Det}}}^{\rm{P}} \propto {\alpha _Z}{E_Z}, $ (17)

    View in Article

    $E_{{\rm{Det}}}^{\rm{S}} \propto \frac{{\left( {{\alpha _x}E_x^2 + {\alpha _y}E_y^2 + {\alpha _z}E_z^2} \right)}}{{{E_{{\rm{In}}}}}}, $ (18)

    View in Article

    $E_{{\rm{Det}}}^{\rm{P}} \propto \left( {{\alpha _z}{E_z} - {\alpha _y}{E_y}} \right), $ (19)

    View in Article

    Jia-Hua Duan, Jia-Ning Chen. Recent progress of near-field studies of two-dimensional polaritonics[J]. Acta Physica Sinica, 2019, 68(11): 110701-1
    Download Citation