[1] CUI X,HE ZH B,SUN H G,et al..Theorectical analysis of dynamic characteristic for giant magnetostrictive material[J].Small & special Electrical Machines,2012,40(11): 4-10.(in Chinese)
[4] CARMAN G P,MITROVIC M. Nonlinear constitutive relations for magnetostrictive Materials with applications to 1-D problems [J]. Journal of Intelligent Material Systems and Structures, 1995, 6 (5): 673-683.
[5] CARMN G P, MITROVIC M. Nonlinear constitutive relations for magnetrostrictive materials [C]. Proc. Of the 2nd International Conference on Intelligent Materials, 1994: 265-278.
[8] KUHEN K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach [J]. European Journal of Control, 2003, 9(4): 407-418.
[9] KUHEN K, JANOCHA H. Inverse feedforward controller for complex hysteretic nonlineraities in smart-material systems [J]. Control Intell. Syst., 2001,29(3): 74-83.
[11] SCHFER J, JANOCHA H. Compensation of hysteresis in solid-state actuators[J]. Sensors and Actuators A: Physical,1995, 49(1): 97-102.
[12] WEI T A, DONG SH, LI D. Feedforward ControllerWith Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications [J]. Mechatronics, IEEE/ASME Trans, 2013, 21(5): 1549-1557.
[13] TAN X B, JOHN S B. Modeling and control of hysteresis in magnetostrictive actuators [J]. Automatica,2013,40(2004): 1469-1480.
[14] Cruz-Hernandez J M, Hayward V. Phase control approach to hysteresis reduction [J].IEEE Transactions on Control Systems Technology, 2001,9(1): 17-26.
[15] QU M M. Research of GMA Vibroseis for Tunnel Seismic Geological Advance Prediction[D]. Shandong: Shandong University(Weihai),2013.
[16] QIN Y D, GAO W G, ZHANG D W. Rate-Dependent Hysteresis Modeling and Compensation of Piezo-Driven Flexure-Based Mechanism[J]. Transactions of Tianjin University,2013,18(3): 157-167.