• Acta Physica Sinica
  • Vol. 68, Issue 12, 129201-1 (2019)
Zi-Xin Zhou1、2, Yin-Bo Huang1, Xing-Ji Lu1、2, Zi-Hao Yuan1、2, and Zhen-Song Cao1、*
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
  • 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.7498/aps.68.20190061 Cite this Article
    Zi-Xin Zhou, Yin-Bo Huang, Xing-Ji Lu, Zi-Hao Yuan, Zhen-Song Cao. Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band[J]. Acta Physica Sinica, 2019, 68(12): 129201-1 Copy Citation Text show less

    Abstract

    Off-axis integrated cavity output spectroscopy (OA-ICOS) is a highly sensitive laser spectroscopy technique. However, due to the use of dense high-order modes for detection, OA-ICOS signal power is low, thus making the detection sensitivity highly dependent on the laser power. To this problem, we introduce an optical re-injection method to re-inject the laser back into the optical cavity again, improving the utilization of laser energy and the power of signal. In this paper, we use optical tracking software to design a re-injection structure, and study several factors affecting the signal gain. Then, we build a re-injection OA-ICOS device in the 2 μm band and also conduct a series of experimental researches. Our results show that the re-injection method enhances the OA-ICOS signal power 8 times and signal-to-noise ratio 4.6 times, which effectively improves the detection sensitivity and the absorption depth of the spectral signal, and alleviates the problem of low signal power in OA-ICOS detection.
    $\frac{{{\rm{d}}{I_{{\rm{in}}}}}}{{{\rm{d}}t}} = \frac{c}{{2d}}\left[ {{I_0}C{t_{{\rm{cavity}}}} - 2{I_{{\rm{in}}}}\left( {1 - {r_{{\rm{cavity}}}}} \right)} \right],$(1)

    View in Article

    ${{I}_{\rm{in}}}=\frac{{{I}_{0}}C{{t}_{\rm{cavity}}}}{2\left( 1-{{r}_{\rm{cavity}}} \right)}\left[ 1-\exp \left( -t/\tau \right) \right],$(2)

    View in Article

    $\tau ={d}/{\left[ c\left( 1-{{r}_{\rm{cavity}}} \right) \right]},$(3)

    View in Article

    ${{I}_{\rm{in}}}=\frac{{{I}_{0}}C{{t}_{\rm{cavity}}}}{2\left( 1-{{r}_{\rm{cavity}}} \right)}=\frac{I}{{{t}_{\rm{cavity}}}},$(4)

    View in Article

    $I={{I}_{0}}C\frac{t_{\rm{cavity}}^{\rm{2}}}{2\left[ \left( 1-{{r}_{\rm{cavity}}} \right)+\alpha \left( v \right)d \right]},$(5)

    View in Article

    $C = \frac{m}{F},$(6)

    View in Article

    $\begin{split} &gain=\frac{{{I}_{\rm{re}}}}{{{I}_{\rm{origin}}}}\\ &=\frac{\displaystyle\frac{{{t}_{\rm{cavity}}}}{2\left[ \left( 1-{{r}_{\rm{cavity}}} \right)+\alpha \left( v \right)d \right]}\sum\nolimits_{i=0}^{n}{{{\left( {{r}_{\rm{re}}}{{r}_{\rm{cavity}}} \right)}^{i}}{{C}_{i}}{{t}_{\rm{cavity}}}{{I}_{0}}}}{{{C}_{0}}\displaystyle\frac{t_{\rm{cavity}}^{\rm{2}}}{2\left[ \left( 1-{{r}_{\rm{cavity}}} \right)+\alpha \left( v \right)d \right]}{{I}_{0}}}\\ &=\frac{\displaystyle\sum\nolimits_{i=0}^{n}{{{\left( {{r}_{\rm{re}}}{{r}_{\rm{cavity}}} \right)}^{i}}{{m}_{i}}}}{{{m}_{0}}}, \end{split}$(7)

    View in Article

    $\alpha \left( \nu \right) = \frac{1}{d}\left| {\ln \left\{ {\frac{1}{{2{r_{{\rm{cavity}}}}^2}}\left[ {\sqrt {4{r_{{\rm{cavity}}}}^2 + \frac{{I_0^2}}{{{I^2}}}{{\left( {1 - {r_{{\rm{cavity}}}}^2} \right)}^2}} - \frac{{{I_0}}}{I}\left( {1 - {r_{{\rm{cavity}}}}^2} \right)} \right]} \right\}} \right|.$(8)

    View in Article

    $\alpha \approx \frac{1}{d}\left( {\frac{{{I_0}}}{I} - 1} \right)\left( {1 - {r_{{\rm{cavity}}}}} \right).$(9)

    View in Article

    Zi-Xin Zhou, Yin-Bo Huang, Xing-Ji Lu, Zi-Hao Yuan, Zhen-Song Cao. Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band[J]. Acta Physica Sinica, 2019, 68(12): 129201-1
    Download Citation