• Photonics Research
  • Vol. 12, Issue 4, 813 (2024)
Yong-Qiang Liu*, Yong Zhu, Hongcheng Yin, Jinhai Sun, Yan Wang, and Yongxing Che
Author Affiliations
  • National Key Laboratory of Scattering and Radiation, Beijing 100854, China
  • show less
    DOI: 10.1364/PRJ.513990 Cite this Article Set citation alerts
    Yong-Qiang Liu, Yong Zhu, Hongcheng Yin, Jinhai Sun, Yan Wang, Yongxing Che. Broadband high-efficiency plasmonic metalens with negative dispersion characteristic[J]. Photonics Research, 2024, 12(4): 813 Copy Citation Text show less
    References

    [1] N. Yu, P. Genevet, M. A. Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] Q. He, S. Sun, S. Xiao. High-efficiency metasurfaces principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [3] H. Liang, A. Martins, B. Borges. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 6, 1461-1470(2019).

    [4] S. Banerji, M. Meem, A. Majumder. Imaging with flat optics: metalenses or diffractive lenses?. Optica, 6, 805-810(2019).

    [5] J. Engelberg, U. Levy. The advantages of metalenses over diffractive lenses. Nat. Commun., 11, 1991(2020).

    [6] Y. Zhang, Y. Fu, C. Ma. Research on fabrication techniques and focusing characteristics of metalens. Coatings, 12, 359(2022).

    [7] Z. Wang, Y. Wu, D. Qi. Progress in design, nanofabrication and performance of metalenses. J. Opt., 24, 033001(2022).

    [8] M. Pan, Y. Fu, M. Zheng. Dielectric metalens for miniaturized imaging systems progress and challenges. Light Sci. Appl., 11, 195(2022).

    [9] E. Noponen, J. Turunen, A. Vasara. Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. Appl. Opt., 31, 5910-5912(1992).

    [10] P. Lalanne, S. Astilean, P. Chavel. Blazed binary subwavelength gratings with efficiencies larger than those of conventional Échelette gratings. Opt. Lett., 23, 1081-1083(1998).

    [11] U. Levy, E. Marom, D. Mendlovic. Thin element approximation for the analysis of blazed gratings simplified model and validity limits. Opt. Commun., 229, 11-21(2004).

    [12] Z. Zhao, M. Pu, H. Gao. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci. Rep., 5, 15781(2015).

    [13] K. Li, Y. Guo, M. Pu. Dispersion controlling meta-lens at visible frequency. Opt. Express, 25, 21419-21427(2017).

    [14] M. Khorasaninejad, Z. Shi, A. Zhu. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [15] E. Arbabi, A. Arbabi, S. Kanali. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [16] W. Zang, Q. Yuan, R. Chen. Chromatic dispersion manipulation based on metalenses. Adv. Mater., 32, 1904935(2019).

    [17] W. Chen, A. Zhu, J. Sisler. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [18] A. Ndao, L. Hsu, J. Ha. Octave bandwidth photonic fishnet-achromatic metalens. Nat. Commun., 11, 3205(2020).

    [19] R. Jia, Y. Gao, Q. Xu. Achromatic dielectric metasurface with linear phase gradient in the terahertz domain. Adv. Opt. Mater., 9, 2001403(2020).

    [20] Y. Wang, Q. Chen, W. Yang. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [21] J. Engelberg, U. Levy. Achromatic flat lens performance limits. Optica, 8, 834-845(2021).

    [22] J. Chen, X. Ye, S. Gao. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431-437(2022).

    [23] P. Sun, M. Zhang, F. Dong. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared. Chin. Opt. Lett., 20, 013601(2021).

    [24] K. Guo, C. Wang, Q. Kang. Broadband achromatic metalens with polarization insensitivity in the mid-infrared range. Opt. Mater., 131, 112489(2022).

    [25] H. Lu, B. Zheng, T. Cai. Frequency-controlled focusing using achromatic metasurface. Adv. Opt. Mater., 9, 2001311(2020).

    [26] F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7, 624-631(2020).

    [27] N. Song, N. Xu, J. Gao. Broadband achromatic and polarization insensitive focused optical vortex generator based on metasurface consisting of anisotropic nanostructures. Front. Phys., 10, 846718(2022).

    [28] K. Ou, F. Yu, G. Li. Broadband achromatic metalens in mid-wavelength infrared. Laser Photonics Rev., 15, 2100020(2021).

    [29] F. Zhao, Z. Li, S. Li. Terahertz metalens of hyper-dispersion. Photonics Res., 10, 886-895(2022).

    [30] C. Qin, W. Fan, Q. Wu. Polarization insensitive achromatic terahertz metalens based on all dielectric metasurfaces. Opt. Commun., 512, 128061(2022).

    [31] C. Williams, Y. Montelongo, T. D. Wilkinson. Plasmonic metalens for narrowband dual-focus imaging. Adv. Opt. Mater., 5, 1700811(2017).

    [32] W. Wang, C. Guo, Z. Zhao. Polarization multiplexing and bifocal optical vortex metalens. Results Phys., 17, 103033(2020).

    [33] M. Hashemi, A. Moazami, M. Naserpour. A broadband multifocal metalens in the terahertz frequency range. Opt. Commun., 370, 306-310(2016).

    [34] H. Chu, J. Qi, S. Xiao. A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging. Appl. Phys. Lett., 112, 174101(2018).

    [35] C. Qi, X. He, B. Ren. Broadband terahertz metalenses based on printed circuit board fabrication. Adv. Opt. Mater., 12, 2302459(2024).

    [36] A. A. Fathnan, M. Liu, D. A. Powell. Achromatic Huygens’ metalenses with deeply subwavelength thickness. Adv. Opt. Mater., 8, 2000754(2020).

    [37] W. Ji, T. Cai, Z. Xi. Highly efficient and broadband achromatic transmission metasurface to refract and focus in microwave region. Laser Photonics Rev., 16, 2100333(2021).

    [38] Y.-Q. Liu, Z. Ren, Y. Shu. Broadband, large-numerical-aperture and high-efficiency microwave metalens by using a double-layer transmissive metasurface. Appl. Phys. Express, 15, 014003(2022).

    [39] X. He, C. Qi, S. Lei. Polarization-independent achromatic Huygens’ metalens with large numerical aperture and broad bandwidth. Nanophotonics, 12, 3633-3644(2023).

    [40] J. Zhang, M. Elkabbash, R. Wei. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Light Sci. Appl., 8, 53(2019).

    [41] Y.-Q. Liu, J. Sun, Y. Che. High numerical aperture microwave metalens. Opt. Lett., 45, 6262-6265(2020).

    [42] Y.-Q. Liu, J. Sun, Y. Shu. High numerical aperture and large focusing efficiency metalens based on multilayer transmitarray elements. Opt. Lasers Eng., 147, 106734(2021).

    [43] M. Al-Joumayly, N. Behdad. Wideband planar microwave lenses using sub-wavelength spatial phase shifters. IEEE Trans. Antennas Propag., 59, 4542-4552(2011).

    [44] A. Boubakri, F. Choubeni, T. Vuong. A near zero refractive index metalens to focus electromagnetic waves with phase compensation metasurface. Opt. Mater., 69, 432-436(2017).

    [45] J. Qi, Y. Mu, S. Wang. Birefringent transmissive metalens with an ultradeep depth of focus and high resolution. Photonics Res., 9, 308-316(2021).

    [46] K. Lee, H. Hong, W. Lee. Broadband metasurface superstrate for polarization-independent wave focusing and gain enhancement at Ka-band. Sci. Rep., 12, 12015(2022).

    [47] S. Tuloti, P. Rezaei, F. Hamedani. High-efficient wideband transmitarray antenna. IEEE Antennas Wireless Propag. Lett., 17, 817-820(2018).

    [48] X. Yang, Y. Zhou, L. Xing. A wideband and low-profile transmitarray antenna using different types of unit-cells. Microw. Opt. Technol. Lett., 61, 1584-1589(2019).

    [49] J. Yang, C. Huang, J. Song. Metasurface-based lens for antenna gain enhancement and radar cross section reduction. IEEE Photonics J., 11, 4601809(2019).

    [50] X. Y. Li, S. B. Wei, G. Y. Cao. Graphene metalens for particle nanotracking. Photonics Res., 8, 1316-1322(2020).

    [51] J. Wu, Y. Pan, W. Che. Design of high-transmittance all-dielectric focusing metasurface with polarization-controllable focus. IEEE Trans. Antennas Propag., 68, 6183-6192(2020).

    [52] I. Derafshi, N. Komjani. A new high aperture efficiency transmitarray antenna based on Huygens metasurfaces. IEEE Trans. Antennas Propag., 70, 5458-5467(2022).

    [53] Q. Lou, Z. Chen. Flat-focal-plane dual-metasurface lens for low scan loss and sidelobe level of a metalens antenna. IEEE Trans. Antennas Propag., 70, 9849-9854(2022).

    [54] F. Wu, J. Wang, K. Luk. A wideband low-profile efficiency-improved transmitarray antenna with over-1-bit phase-shifting elements. IEEE Access, 8, 32163-32169(2020).

    [55] D. Serup, G. Pedersen, S. Zhang. Combined single-layer K-band transmitarray and beamforming S-band antenna array for sitcom. IEEE Open J. Antennas Propag., 3, 1134-1140(2022).

    [56] S. Pan, W. Shen, Y. Feng. Miniaturization and performance enhancement of Vivaldi antenna based on ultra-wideband metasurface lens. Int. J. Electron. Commun., 134, 153703(2021).

    [57] Z. Shen, Z. Wang, H. Liu. Optical trapping and separation of metal nanoparticles by cylindrical metalenses with phase gradients. IEEE Photonics J., 12, 4600810(2020).

    [58] Y. Wang, M. Peng, W. Cheng. Manipulation force analysis of nanoparticles with ultra-high numerical aperture metalens. Opt. Express, 30, 28479-28491(2022).

    [59] J. Zhou, J. Zhao, Q. Wu. Nonlinear computational edge detection metalens. Adv. Funct. Mater., 32, 2204734(2022).

    [60] A. Karnileli, D. Roitman, M. Liebtrau. Cylindrical metalens for generation and focusing of free-electron radiation. Nano Lett., 22, 5641-5650(2022).

    [61] Y.-Q. Liu, J. Guo, S. Li. Low-profile and compact retroreflector enabled by a wide-angle and high-efficiency metalens. Opt. Mater., 134, 113105(2022).

    [62] J. Jung, H. Park, J. Park. Broadband metamaterials and metasurfaces: a review from the perspectives of materials and devices. Nanophotonics, 9, 3165-3196(2020).

    [63] A. Pesarakloo, M. Khalaj-amirhosseini. Planar, wide-band omnidirectional retroreflector using metal-only transmitarray structure for TE and TM polarizations. Sci. Rep., 12, 11279(2022).

    [64] https://doi.org/10.6084/m9.figshare.25144673

    Yong-Qiang Liu, Yong Zhu, Hongcheng Yin, Jinhai Sun, Yan Wang, Yongxing Che. Broadband high-efficiency plasmonic metalens with negative dispersion characteristic[J]. Photonics Research, 2024, 12(4): 813
    Download Citation