• Acta Physica Sinica
  • Vol. 68, Issue 9, 094301-1 (2019)
Meng-Zhu Li1、2, Zheng-Lin Li1、*, Ji-Xun Zhou1、3, and Ren-He Zhang1
Author Affiliations
  • 1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332-0405, USA
  • show less
    DOI: 10.7498/aps.68.20190183 Cite this Article
    Meng-Zhu Li, Zheng-Lin Li, Ji-Xun Zhou, Ren-He Zhang. Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed[J]. Acta Physica Sinica, 2019, 68(9): 094301-1 Copy Citation Text show less
    Bottom model with a low speed sediment layer.低声速沉积层海底模型
    Fig. 1. Bottom model with a low speed sediment layer.低声速沉积层海底模型
    Reflection loss for the grazing angle of 1°.掠射角1°时对应的海底反射损失
    Fig. 2. Reflection loss for the grazing angle of 1°.掠射角1°时对应的海底反射损失
    Sensitivity analyses of the bottom reflection loss to the geoacoustic parameters under the small grazing angle.小掠射角情况下参数敏感性分析
    Fig. 3. Sensitivity analyses of the bottom reflection loss to the geoacoustic parameters under the small grazing angle.小掠射角情况下参数敏感性分析
    Comparison between the transmission loss and reflection loss at different frequencies.声传播损失与海底反射损失随频率的变化
    Fig. 4. Comparison between the transmission loss and reflection loss at different frequencies.声传播损失与海底反射损失随频率的变化
    Flowchart of geoacoustic inversion for the sediment with lower sound speed.低声速沉积层声学参数联合反演流程
    Fig. 5. Flowchart of geoacoustic inversion for the sediment with lower sound speed.低声速沉积层声学参数联合反演流程
    Water environment and experiment configuration during the experiment: (a) Measured sound speed profile; (b) experimental configuration and water depth.实验期间的水文环境和设备布设 (a) 声速剖面; (b) 设备布设及海深示意图
    Fig. 6. Water environment and experiment configuration during the experiment: (a) Measured sound speed profile; (b) experimental configuration and water depth.实验期间的水文环境和设备布设 (a) 声速剖面; (b) 设备布设及海深示意图
    Transmission losses at the different frequencies (r = 9.2 km, zs = 50.0 m,zr = 53.5 m).声传播损失随频率的变化 (r = 9.2 km,zs = 50.0 m, zr = 53.5 m)
    Fig. 7. Transmission losses at the different frequencies (r = 9.2 km, zs = 50.0 m,zr = 53.5 m). 声传播损失随频率的变化 (r = 9.2 km,zs = 50.0 m, zr = 53.5 m)
    Relationship between the thickness of sediment and its sound speed at the special frequency step.给定频率间隔下沉积层厚度与声速的关系
    Fig. 8. Relationship between the thickness of sediment and its sound speed at the special frequency step.给定频率间隔下沉积层厚度与声速的关系
    One-dimensional marginal posterior probability densities of the parameters.参数的一维边缘概率密度分布
    Fig. 9. One-dimensional marginal posterior probability densities of the parameters.参数的一维边缘概率密度分布
    Ambiguity surface of source range and water depth.声源距离和海深的模糊度表面
    Fig. 10. Ambiguity surface of source range and water depth.声源距离和海深的模糊度表面
    Ambiguity surface of sediment attenuation and basement attenuation.代价函数随沉积层和基底衰减系数的模糊度表面
    Fig. 11. Ambiguity surface of sediment attenuation and basement attenuation.代价函数随沉积层和基底衰减系数的模糊度表面
    Inverted attenuation coefficients at different frequencies反演得到的不同频率的衰减系数
    Fig. 12. Inverted attenuation coefficients at different frequencies反演得到的不同频率的衰减系数
    Comparison between the numerical TL and experimental TL at different frequencies: (a) zr = 22 m; (b) zr = 50 m.利用反演参数计算的不同频率传播损失与实验结果的对比 (a) zr = 22 m; (b) zr = 50 m
    Fig. 13. Comparison between the numerical TL and experimental TL at different frequencies: (a) zr = 22 m; (b) zr = 50 m. 利用反演参数计算的不同频率传播损失与实验结果的对比 (a) zr = 22 m; (b) zr = 50 m
    Comparison of reflection losses for different bottom models: (a) Uniform liquid half-space bottom model; (b) two layered bottom model; (c) at grazing angle 0.1°; (d) at grazing angle 11.6°.不同海底模型的海底反射损失比较 (a) 半无限大海底模型; (b) 双层海底模型; (c) 掠射角0.1°; (d) 掠射角11.6°
    Fig. 14. Comparison of reflection losses for different bottom models: (a) Uniform liquid half-space bottom model; (b) two layered bottom model; (c) at grazing angle 0.1°; (d) at grazing angle 11.6°.不同海底模型的海底反射损失比较 (a) 半无限大海底模型; (b) 双层海底模型; (c) 掠射角0.1°; (d) 掠射角11.6°
    c1/m·s–1ρ1/g·cm–3α1/dB·λ–1c2/m·s–1ρ2/g·cm–3α2/dB·λ–1d/m c3/m·s–1ρ3/g·cm–3α3/dB·λ–1
    14881.00.014601.40.10516201.80.10
    Table 1. Seabed environmental parameters for low-speed sediment simulation.
    收发距离/km
    151020
    有效海底掠射角10.41°6.16°2.15°0.52°
    标准差7.84°6.44°3.75°0.70°
    Table 2. Effective bottom grazing angles at different ranges.
    c2/m·s–1ρ2/g·cm–3c3/m·s–1ρ3/g·cm–3d/m r/km h/m
    搜索范围1418—14871.1—1.61489—18009.0—9.460—65
    最优值1474.011.351580.471.6410.329.2664.63
    平均值1474.121.391581.021.6410.489.2264.65
    标准差2.220.071.520.000.980.100.34
    Table 3.

    Search ranges of the unknown parameters and the inverted results.

    待反演参数搜素范围及反演结果

    Meng-Zhu Li, Zheng-Lin Li, Ji-Xun Zhou, Ren-He Zhang. Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed[J]. Acta Physica Sinica, 2019, 68(9): 094301-1
    Download Citation