• Frontiers of Optoelectronics
  • Vol. 2, Issue 3, 350 (2009)
Baozhu WANG1、2、*, Xiaoliang WANG1, Xiaoyan WANG1, Junxue RAN1, Hongling XIAO1, Cuimei WANG1, and Guoxin HU1
Author Affiliations
  • 1Material Science Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Institute of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
  • show less
    DOI: 10.1007/s12200-009-0016-x Cite this Article
    Baozhu WANG, Xiaoliang WANG, Xiaoyan WANG, Junxue RAN, Hongling XIAO, Cuimei WANG, Guoxin HU. Structural and optical properties of AlxGa1-xN/AlyGa1-yN multiple quantum wells for deep ultraviolet emission[J]. Frontiers of Optoelectronics, 2009, 2(3): 350 Copy Citation Text show less
    References

    [1] Miyoshi M, Ishikawa H, Egawa T, Asai K, Mouri M, Shibata T, Tanaka M, Oda O. High-electron-mobility AlGaN/AlN/GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy. Applied Physics Letters, 2004, 85(10): 1710-1712

    [2] Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y, Aoyagi Y. Remarkable breakdown voltage enhancement in AlGaN channel high electron mobility transistors. Applied Physics Letters, 2008, 92(26): 263502

    [3] Wang X L,Wang CM, Hu G X, Xiao H L, Fang C B,Wang J X, Ran J X, Li J P, Li J M, Wang Z G. MOCVD-grown high-mobility Al0.3Ga0.7N/AlN/GaN HEMT structure on sapphire substrate. Journal of Crystal Growth, 2007, 298: 791-793

    [4] Wang X L, Cheng T S, Ma Z Y, Hu G X, Xiao H L, Ran J X, Wang C M, Luo W J. 1-mm gate periphery AlGaN/AlN/GaN HEMTs on SiC with output power of 9.39Wat 8 GHz. Solid-State Electronics, 2007, 51(3): 428-432

    [5] Wang X L, Cheng T S, Xiao H L, Wang C M, Hu G X, Luo W J, Tang J, Guo L C, Li J M. High-performance 2 mm gate width GaN HEMTs on 6H-SiC with output power of 22.4W @ 8 GHz. Solid-State Electronics, 2008, 52(6): 926-929

    [6] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687-1689

    [7] Adivarahan V,Wu S, Zhang J P, Chitnis A, Shatalov M, Mandavilli V, Gaska R, Khan M A. High-efficiency 269 nm emission deep ultraviolet light-emitting diodes. Applied Physics Letters, 2004, 84(23): 4762-4764

    [8] Nishida T, Saito H, Kobayashi N. Efficient and high-power AlGaNbased ultraviolet light-emitting diode grown on bulk GaN. Applied Physics Letters, 2001, 79(6): 711-713

    [9] Khan N, Li J. Effects of compressive strain on optical properties of InxGa1-xN/GaN quantum wells. Applied Physics Letters, 2006, 89(15): 151916

    [10] Jang J S. High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaNGaN superlattice. Applied Physics Letters, 2008, 93(8): 081118

    [11] Maier M, Khler K, Kunzer M, Pletschen W, Wagner J. Reduced nonthermal rollover of wide-well GaInN light-emitting diodes. Applied Physics Letters, 2009, 94(4): 041103

    [12] Jeon S K, Lee J G, Park E H, Jang J, Lim J G, Kim S K, Park J S. The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties. Applied Physics Letters, 2009, 94(13): 131106

    [13] Crawford M H, Allerman A A, Fischer A J, Bogart K H A, Lee S R, Kaplar R J, Chow W W, Folletaedt D M. Optimization and performance of AlGaN-based multi-quantum-well deep-UV LEDs. Proceedings of SPIE, 2004, 5366: 75-84

    [14] Zhang J P, Chitnis A, Adivarahn V, Wu S, Mandavilli V, Pachipulusu R, Shatalov M, Simin G, Yang J W, Khan M A. Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm. Applied Physics Letters, 2002, 81(26): 4910-4912

    [15] Yasan A, McClintock R, Mayes K, Darvish S R, Kung P, Razeghi M. Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm. Applied Physics Letters, 2002, 81(5): 801-802

    [16] Hirayama H, Yatabe T, Noguchi N, Ohashi T, Kamata N. 231-261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Applied Physics Letters, 2007, 91(7): 071901

    [17] Kapolnek D, Wu X H, Heying B, Keller S, Keller B P, Mishra U K, DenBaars S P, Speck J S. Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Applied Physics Letters, 1995, 67(11): 1541-1543

    [18] Katona T M, Margalith T, Moe C, Schmidt M C, Nakamura S, Speck J S, DenBaars S P. Growth and fabrication of shortwavelength UV LEDs. Proceedings of SPIE, 2004, 5187: 250-259

    [19] Wen T C, Lee W I. Influence of barrier growth temperature on the properties of InGaN/GaN quantum well. Japanese Journal of Applied Physics, 2000, 40: 5302-5303

    [20] Feng S W, Tang T Y, Lu Y C, Liu S J, Lin E C, Yang C C, Ma K J, Shen C H, Chen L C, Kim K H, Lin J Y, Jiang H X. Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing. Journal of Applied Physics, 2004, 95(10): 5388-5396

    Baozhu WANG, Xiaoliang WANG, Xiaoyan WANG, Junxue RAN, Hongling XIAO, Cuimei WANG, Guoxin HU. Structural and optical properties of AlxGa1-xN/AlyGa1-yN multiple quantum wells for deep ultraviolet emission[J]. Frontiers of Optoelectronics, 2009, 2(3): 350
    Download Citation