[1] J. W.Forbes. Impedance matching technique. Shock Wave Compression of Condensed Matter, 31-57(2012).
[2] J. M.Walsh, M.Walsh J., H.Rice M., G.McQueen R., F. and, M. H.Rice, M.Walsh J., H.Rice M., G.McQueen R., F. and, R. G.McQueen, M.Walsh J., H.Rice M., G.McQueen R., F. and, F. L.Yarger. Shock-wave compressions of twenty-seven metals. Equations of state of metals. Phys. Rev., 108, 196(1957).
[3] R. G.McQueen, G.McQueen R., S. P.Marsh. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars. J. Appl. Phys., 31, 1253(1960).
[4] L. V.Al’tshuler, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, K. K.Krupnikov, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, B. N.Ledenev, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, V. I.Zhuchikhin, V.Al’tshuler L., K.Krupnikov K., N.Ledenev B., I.Zhuchikhin V., M. and, M. I.Brazhnik. Dynamic compressibility and equation of state of iron under high pressure. Sov. Phys. JETP, 34, 606(1958).
[5] A. I.Funtikov. Phase diagram and melting curve of iron obtained using the data of static and shock-wave measurements. High Temp., 41, 850(2003).
[6] J. M.Brown, M.Brown J., R. G.McQueen. Melting of iron under core conditions. Geophys. Res. Lett., 7, 533(1980).
[7] J. M.Brown, M.Brown J., R. G.McQueen. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res., 91, 7485(1986).
[8] B. K.Godwal, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, F.González-Cataldo, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, A. K.Verma, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, L.Stixrude, K.Godwal B., F.González-Cataldo, K.Verma A., L.Stixrude, R.Jeanloz and, R.Jeanloz. Stability of iron crystal structures at 0.3–1.5 TPa. Earth Planet. Sci. Lett., 409, 299(2015).
[9] A. S.Vladimirov, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, N. P.Voloshin, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, V. N.Nogin, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, A. V.Petrovtsev, S.Vladimirov A., P.Voloshin N., N.Nogin V., V.Petrovtsev A., V. and, V. A.Simonenko. Shock compressibility of aluminum at p ≳ 1 Gbar. JETP Lett, 39, 82(1984).
[10] D. N.Polsinet?al.. Measurement of body-centered-cubic aluminum at 475 GPa. Phys. Rev. Lett., 120, 029902(2018).
[11] Yu. B.Kudasovet?al.. Lattice dynamics and phase diagram of aluminum at high temperatures. J. Exp. Theor. Phys., 117, 664(2013).
[12] S. R.Baty, R.Baty S., L.Burakovsky, D.Errandonea and, L.Burakovsky, R.Baty S., L.Burakovsky, D.Errandonea and, D.Errandonea. Ab initio phase diagram of copper. Crystals, 11, 537(2021).
[13] S. R.Baty, R.Baty S., L.Burakovsky, D.Errandonea and, L.Burakovsky, R.Baty S., L.Burakovsky, D.Errandonea and, D.Errandonea. Ab initio phase diagram of silver. J. Phys.: Condens. Matter, 33, 485901(2021).
[14] J.-P.Davis, J.-P.Davis, L.Brown J., C. and, J. L.Brown, J.-P.Davis, L.Brown J., C. and, C. T.Seagle. Off-Hugoniot mechanical response of metal standards at the Z machine(2018).
[15] M. D.Knudson. Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments. AIP Conf. Proc., 1426, 35(2012).
[16] L.Burakovsky, L.Burakovsky, P.Chen S., L.Preston D., D. and, S. P.Chen, L.Burakovsky, P.Chen S., L.Preston D., D. and, D. L.Preston, L.Burakovsky, P.Chen S., L.Preston D., D. and, D. G.Sheppard. Z methodology for phase diagram studies: Platinum and tantalum as examples. J. Phys.: Conf. Ser., 500, 162001(2014).
[17] L.Burakovskyet?al.. Ab initio phase diagram of iridium. Phys. Rev. B, 94, 094112(2016).
[18] C.Seagle, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, B.Reinhart, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, S.Alexander, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, J.Brown, C.Seagle, B.Reinhart, S.Alexander, J.Brown, J.-P.Davis and, J.-P.Davis. Shock compression of iridium(2019).
[19] H. K.Mao, K.Mao H., J.Xu, P. and, J.Xu, K.Mao H., J.Xu, P. and, P. M.Bell. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 91, 4673(1986).
[20] W. J.Carter, J.Carter W., P.Marsh S., N.Fritz J., R. and, S. P.Marsh, J.Carter W., P.Marsh S., N.Fritz J., R. and, J. N.Fritz, J.Carter W., P.Marsh S., N.Fritz J., R. and, R. G.McQueen. Accurate Characterization of the High-Pressure Environment, 147(1971).
[21] I. V.Lomonosov, V.Lomonosov I., S. V.Fortova. Wide-range semiempirical equations of state of matter for numerical simulation on high-energy processes. High Temp., 55, 585(2017).
[22] M. K.Wallace, K.Wallace M., M.Winey J., Y. and, J. M.Winey, K.Wallace M., M.Winey J., Y. and, Y. M.Gupta. Shock compression of silver to 300 GPa: Wave profile measurements and melting transition. Phys. Rev. B, 104, 014101(2021).
[23] C. A.McCoy, A.McCoy C., D.Knudson M., S.Root and, M. D.Knudson, A.McCoy C., D.Knudson M., S.Root and, S.Root. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures. Phys. Rev. B, 96, 174109(2017).
[24] H.Liuet?al.. Validation for equation of state in wide regime: Copper as prototype. Matter Radiat. Extremes, 1, 123(2016).
[25] M.Guinan, and M.Guinan, D.Steinberg. A simple approach to extrapolating measured polycrystalline shear moduli to very high pressure. J. Phys. Chem. Solids, 36, 829(1975).
[26] N. N.Kalitkin, N.Kalitkin N., L. V.Kuz’mina. Copper as a shockwave standard. Dokl. Phys., 43, 276(1998).
[27] M. C.Marshallet?al.. Developing quartz and molybdenum as impedance-matching standards in the 100-Mbar regime. Phys. Rev. B, 99, 174101(2019).
[28] D. G.Hickset?al.. Shock compression of quartz in the high-pressure fluid regime. Phys. Plasmas, 12, 082702(2005).
[29] M. D.Knudson, D.Knudson M., M. P.Desjarlais. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard. Phys. Rev. Lett., 103, 225501(2009).
[30] M. D.Knudson, D.Knudson M., M. P.Desjarlais. Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime. Phys. Rev. B, 88, 184107(2013).
[31] S.Root, S.Root, P.Townsend J., M. and, J. P.Townsend, S.Root, P.Townsend J., M. and, M. D.Knudson. Shock compression of fused silica: An impedance matching standard. J. Appl. Phys., 126, 165901(2019).
[32] L.Burakovsky, L.Burakovsky, L.Preston D., D.Ramsey S., R. and, D. L.Preston, L.Burakovsky, L.Preston D., D.Ramsey S., R. and, S. D.Ramsey, L.Burakovsky, L.Preston D., D.Ramsey S., R. and, R. S.Baty. Analytic model of principal Hugoniot at all pressures. J. Appl. Phys., 132, 215109(2022).
[33] N. N.Kalitkin, N.Kalitkin N., L. V.Kuzmina. Quantum-statistical Hugoniots of porous substances. Mat. Model., 10, 111(1998).
[34] V. E.Fortov, N. N.Kalitkin, N.Kalitkin N., E.Fortov V., L. V.Kuzmina, V.Al’tshuler L., F.Trunin R., A. and, L. V.Al’tshuler, E.Fortov V., V.Al’tshuler L., F.Trunin R., A. and, R. F.Trunin, E.Fortov V., V.Al’tshuler L., F.Trunin R., A. and, A. I.Funtikov. Wide-range characteristic thermodynamic curves. High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter, 116(2004).
[35] N. N.Kalitkin, N.Kalitkin N., L. V.Kuzmina. Shock Hugoniots of 83 substances. Chem. Phys. Rep., 18, 1913(2000).
[36] J. D.Johnson. General features of Hugoniots(1996).
[37] J. D.Johnson. General features of Hugoniots—II(1997).
[38] J. D.Johnson. The features of the principal Hugoniot. AIP Conf. Proc., 429, 27(1998).
[39] for the experimental values of total ionization energies of elements with 1 ≤ Z ≤ 29..
[40] R. W.Gómez. A simple model to calculate total and ionization energies of any atom. Eur. J. Phys., 40, 015403(2019).
[41] . for the plot of A/Z as a function of Z for the entire periodic table.
[42] L. V.Al’tshuler, V.Al’tshuler L., N.Kalitkin N., V.Kuz’mina L., B. and, N. N.Kalitkin, V.Al’tshuler L., N.Kalitkin N., V.Kuz’mina L., B. and, L. V.Kuz’mina, V.Al’tshuler L., N.Kalitkin N., V.Kuz’mina L., B. and, B. S.Chekin. Shock adiabats for ultrahigh pressures. Sov. Phys. JETP, 45, 167(1977).
[43] N.Ozaki, N.Ozaki, J.Nellis W., T.Mashimoet?al., W. J.Nellis, N.Ozaki, J.Nellis W., T.Mashimoet?al., T.Mashimoet?al.. Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Sci. Rep., 6, 26000(2016).
[44] W. J.Nellis. Warm dense matter at shock pressures up to 20 TPa (200 Mbar). Ultracondensed Matter by Dynamic Compression, 130-138(2017).
[45] J. D.Johnson. Bound and estimate for the maximum compression of single shocks. Phys. Rev. E, 59, 3727(1999).
[46] N. N.Kalitkin, N.Kalitkin N., V.Kuzmina L., A. and, L. V.Kuzmina, N.Kalitkin N., V.Kuzmina L., A. and, A. I.Funtikov. The main Hugoniots of 10 metals. Mat. Model., 14, 27(2002).
[47] E. S.Ivanchenko, S.Ivanchenko E., N.Kalitkin N., L. and, N. N.Kalitkin, S.Ivanchenko E., N.Kalitkin N., L. and, L. V.Kuz’mina. Main Hugoniot adiabats in the tefis database of thermophysical properties of substances (TEFIS). Math. Models Comput. Simul., 1, 383(2009).
[48] S. P.Marsh. LASL Shock Hugoniot Data(1980).
[49] S. A.Thomas, A.Thomas S., S.Hixson R., C.Hawkins M., O. and, R. S.Hixson, A.Thomas S., S.Hixson R., C.Hawkins M., O. and, M. C.Hawkins, A.Thomas S., S.Hixson R., C.Hawkins M., O. and, O. T.Strand. Wave speeds in single-crystal and polycrystalline copper. Int. J. Impact Eng., 139, 103506(2020).
[50] M.Simset?al.. Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions. J. Appl. Phys., 132, 075902(2022).
[51] P. R.Levashov, R.Levashov P., V.Khishchenko K., V.Lomonosov I., V. and, K. V.Khishchenko, R.Levashov P., V.Khishchenko K., V.Lomonosov I., V. and, I. V.Lomonosov, R.Levashov P., V.Khishchenko K., V.Lomonosov I., V. and, V. E.Fortov. Database on shock-wave experiments and equations of state available via internet. AIP Conf. Proc., 706, 87(2004).
[52] M. A.Kadatskiy, A.Kadatskiy M., K. V.Khishchenko. Theoretical investigation of the shock compressibility of copper in the average-atom approximation. Phys. Plasmas, 25, 112701(2018).
[53] M. A.Kadatskiy. Quantum-statistical calculation of thermodynamic properties of simple substances and mixtures at high energy densities(2019).
[54] N. M.Gill, M.Gill N., C. E.Starrett. Tartarus: A relativistic Green’s function quantum average atom code. High Energy Density Phys., 24, 33-38(2017).
[55]
[56] V. P.Kopyshev, A. F.Nikiforov, F.Nikiforov A., G.Novikov V., V. and, V. G.Novikov, F.Nikiforov A., G.Novikov V., V. and, V. B.Uvarov. Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State(2005).
[57] D. C.Wallace. Nature of the process of overdriven shocks in metals. Phys. Rev. B, 24, 5607(1981).
[58] K. R.Cochraneet?al.. Platinum equation of state to greater than two terapascals: Experimental data and analytical models. Phys. Rev. B, 105, 224109(2022).
[59] L. R.Veeser, R.Veeser L., C.Solem J., A. and, J. C.Solem, R.Veeser L., C.Solem J., A. and, A. J.Lieber. Impedance-match experiments using laser-driven shock waves. Appl. Phys. Lett., 35, 761(1979).
[60] H. C.Pantet?al.. Laser driven shock wave experiments for equation of state studies at megabar pressures. J. Phys.: Condens. Matter, 14, 10787(2002).
[61] S.Rootet?al.. Argon equation of state data to 1 TPa: Shock compression experiments and simulations. Phys. Rev. B, 106, 174114(2022).
[62] L. D.Landau, D.Landau L., E. M.Lifshitz. Statistical Physics(1969).
[63] K.Nagayama, and K.Nagayama, Y.Mori. Simple method of calculating Grüneisen parameter based on the shock Hugoniot data for solids. J. Phys. Soc. Jpn., 63, 4070(1994).
[64] R. H.Joshiet?al.. Grüneisen parameter and equations of states for copper—High pressure study. Comput. Condens. Matter, 15, 79(2018).
[65] L. V.Al’tshuler, V.Al’tshuler L., E.Brusnikin S., E. and, S. E.Brusnikin, V.Al’tshuler L., E.Brusnikin S., E. and, E. A.Kuz’menkov. Isotherms and Grüneisen functions for 25 metals. J. Appl. Mech. Tech. Phys., 28, 129(1987).
[66] C. W.Greeff, W.Greeff C., C.Boettger J., J.Graf M., J. and, J. C.Boettger, W.Greeff C., C.Boettger J., J.Graf M., J. and, M. J.Graf, W.Greeff C., C.Boettger J., J.Graf M., J. and, J. D.Johnson. Theoretical investigation of the Cu EOS standard. J. Phys. Chem. Solids, 67, 2033(2006).
[67] N. Yu.Orlov, Yu.Orlov N., A.Kadatskiy M., B.Denisov O., K. and, M. A.Kadatskiy, Yu.Orlov N., A.Kadatskiy M., B.Denisov O., K. and, O. B.Denisov, Yu.Orlov N., A.Kadatskiy M., B.Denisov O., K. and, K. V.Khishchenko. Application of quantum-statistical methods to studies of thermodynamic and radiative processes in hot dense plasmas. Matter Radiat. Extremes, 4, 054403(2019).
[68] M. A.Kadatskiy, A.Kadatskiy M., K. V.Khishchenko. Shock compressibility of iron calculated in the framework of quantum-statistical models with different ionic parts. J. Phys.: Conf. Ser., 774, 012005(2016).
[69] M. A.Kadatskiy, A.Kadatskiy M., K. V.Khishchenko. Comparison of Hugoniots calculated for aluminum in the framework of three quantum-statistical models. J. Phys.: Conf. Ser., 653, 012079(2015).
[70] S. D.Ramseyet?al.. Converging shock flows for a Mie-Grüneisen equation of state. Phys. Fluids, 30, 046101(2018).
[71] F.de Gasperinet?al.. MeerKAT view of the diffuse radio sources in Abell 3667 and their interactions with the thermal plasma. Astron. Astrophys., 659, A146(2022).