[1] MOSES E I, CAMPBELL J H, STOLZ C J, et al.. The national ignition facility: the world′s largest optics and laser system[J].SPIE, 2003, 5001:1-15.
[2] MOSES E I. National ignition facility: 1.8 MJ, 750 TW ultraviolet laser[J]. SPIE, 2004, 5341: 13-24.
[3] ANDRE M L. Status of the LMJ project[J]. SPIE, 1996, 3047: 38-42.
[4] PENG H S, ZHANG X M, WEI X F, et al.. Design of 60-kJ SG-Ⅲ laser facility and related technology development[J]. SPIE, 2001, 4424: 98-103.
[5] XIAO G Y, FAN D Y, WANG S J, et al.. SG-Ⅱ solid-state laser ICF system[J]. SPIE, 1998, 3492: 890-895.
[6] CAMP D M, KOZLOWSKI M R, SHEEHAN L M, et al.. Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces[R].UCRL-JC-129301, 1997.
[7] GNIN F Y, SALLEO A, PISTOR T V, et al.. Role of light intensification by cracks in optical breakdown on surfaces[J]. Journal of the Optical Society of America A, 2001, 18(10): 2607-2616.
[8] YANG M H, QI H J, ZHAO Y N, et al.. Reduction of the 355-nm laser-induced damage initiators by removing the subsurface cracks in fused silica [J]. SPIE, 2011, 8206: 82061C-1-7.
[9] NEAUPORT J, CORMONT P, LAMAIGNRE L, et al.. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm[J]. Optics Communications, 2008, 281(14): 3802-3805.
[10] LIU H J, HUANG J, YE X, et al.. Residual impurities on fused silica surface processed by different technics and their effects on laser induced damage at 355 nm [J]. Optoelectron. Adv. Mater., 2015,17:1406-1410.
[11] LIU H J, YE X, ZHOU X D, et al.. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process [J]. Optical Materials, 2014, 36(5): 855-860.
[12] LIU H J, HUANG J, WANG F R, et al.. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Optics Express, 2013, 21(10): 12204-12217.
[13] NEAUPORT J, AMBARD C, CORMONT P, et al.. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Optics Express, 2009, 17(22): 20448-20456.
[14] SURATWALA T, WONG L, MILLER P, et al.. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 2006, 352(52/53/54): 5601-5617.
[15] ZHOU Y Y, FUNKENBUSCH P D, QUESNEL D J, et al.. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses[J]. Journal of the American Ceramic Society, 1994, 77(12): 3277-3280.
[16] MENAPACE J A, DAVIS P J, STEELE W A, et al.. MRF applications: measurement of process-dependent subsurface damage in optical materials using the MRF wedge technique[R]. UCRL-PROC-217271, 2005.
[17] LIU J, MA ZH L, WANG J L, et al.. Research status of subsurface damage detection technology of optical elements[J]. Laser & Optoelectronics Progress, 2011, 48:081204. (in Chinese)
[18] TIAN A L, DANG J J, WANG CH H, et al.. Optical subsurface damage detection and its analysis[J]. Journal of Xi′an Technological University, 2011, 31(4):24-28. (in Chinese)
[19] FHNLE O, WONS T, KOCH T, et al.. ITIRM as a tool for qualifying polishing processes [J]. Appl. Opt., 2002, 41: 4036-4038.
[20] WUTTIG A.,STEINERT J, DUPARRE A. et al.. Surface roughness and subsurface damage characterization of fused silica substrates[J]. SPIE, 1999, 3739: 369-376.
[21] MA B, SHEN Z X, HE P F, et al.. Detection of subsurface defects of fused silica optics by confocal scattering microscopy [J].Chinese Optics Letters, 2010, 8(3):296-299.
[22] CHENG J, WANG J H, ZHANG P Y, et al.. Experimental study on HF etching of fused silica[J]. High Power Laser and Particle Beams, 2017, 29(11): 8-14. (in Chinese)
[23] ZHU Y N, MAI L B, LIU Q M et al.., Test methods for laser induced damage threshold of optical surfaces.Part 1: 1 on 1 test, GB/T 16601-1996[S]. National Technology Supervision Bureau, 1996. (in Chinese)