• Photonics Research
  • Vol. 9, Issue 2, 237 (2021)
Dipa Ghindani, Alireza R. Rashed, and Humeyra Caglayan*
Author Affiliations
  • Faculty of Engineering and Natural Sciences, Photonics, Tampere University, 33720 Tampere, Finland
  • show less
    DOI: 10.1364/PRJ.411456 Cite this Article Set citation alerts
    Dipa Ghindani, Alireza R. Rashed, Humeyra Caglayan, "Unveiling spontaneous emission enhancement mechanisms in metal–insulator–metal nanocavities," Photonics Res. 9, 237 (2021) Copy Citation Text show less
    References

    [1] H. Walther, B. T. H. Varcoe, B.-G. Englert, T. Becker. Cavity quantum electrodynamics. Rep. Prog. Phys., 69, 1325-1382(2006).

    [2] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [3] Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, Q. Xiong. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun., 5, 4953(2014).

    [4] A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, C. Voisin. Widely tunable single-photon source from a carbon nanotube in the Purcell regime. Phys. Rev. Lett., 116, 247402(2016).

    [5] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics, 4, 174-177(2010).

    [6] W. L. Barnes. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt., 45, 661-699(1998).

    [7] J. R. Lakowicz. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem., 337, 171-194(2005).

    [8] E. Fort, S. Grésillon. Surface enhanced fluorescence. J. Phys. D, 41, 013001(2007).

    [9] A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, E. Yablonovitch. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B, 66, 153305(2002).

    [10] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater., 3, 601-605(2004).

    [11] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, S. Noda. Control of light emission by 3D photonic crystals. Science, 305, 227-229(2004).

    [12] K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, Y. Arakawa. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nat. Photonics, 2, 688-692(2008).

    [13] Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, H.-C. Wu. Fluorescence enhancement by surface gratings. Opt. Express, 14, 10825-10830(2006).

    [14] Y. Liu, S. Blair. Fluorescence enhancement from an array of subwavelength metal apertures. Opt. Lett., 28, 507-509(2003).

    [15] S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97, 017402(2006).

    [16] O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen. Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater., 18, 91-95(2006).

    [17] H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, P.-F. Lenne. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett., 95, 117401(2005).

    [18] M. Pelton. Modified spontaneous emission in nanophotonic structures. Nat. Photonics, 9, 427-435(2015).

    [19] N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913-3961(2011).

    [20] Y. Kurokawa, H. T. Miyazaki. Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B, 75, 035411(2007).

    [21] F. Ding, L. Mo, J. Zhu, S. He. Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber. Appl. Phys. Lett., 106, 061108(2015).

    [22] Z. Li, S. Butun, K. Aydin. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photon., 2, 183-188(2015).

    [23] A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, E. Ozbay. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photon. Res., 6, 168-176(2018).

    [24] S. Prayakarao, D. Miller, D. Courtwright, C. E. Bonner, M. A. Noginov. Non-resonant enhancement of spontaneous emission of HITC dye in metal-insulator-metal waveguides. J. Opt. Soc. Am. B, 36, 2312-2316(2019).

    [25] M. Nyman, A. Shevchenko, I. Shavrin, Y. Ando, K. Lindfors, M. Kaivola. Large-area enhancement of far-field fluorescence intensity using planar nanostructures. APL Photon., 4, 076101(2019).

    [26] A. R. Rashed, M. Habib, N. Das, E. Ozbay, H. Caglayan. Plasmon-modulated photoluminescence enhancement in hybrid plasmonic nano-antennas. New J. Phys., 22, 093033(2020).

    [27] R. Fan, Y. Xia, D. Chen. Solid state dye lasers based on LDS 698 doped in modified polymethyl methacrylate. Opt. Express, 16, 9804-9810(2008).

    [28] C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, G. F. Strouse. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc., 127, 3115-3119(2005).

    [29] G.-C. Li, Q. Zhang, S. A. Maier, D. Lei. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics, 7, 1865-1889(2018).

    [30] A. B. Serrano-Montes, J. Langer, M. Henriksen-Lacey, D. Jimenez de Aberasturi, D. M. Solís, J. M. Taboada, F. Obelleiro, K. Sentosun, S. Bals, A. Bekdemir, F. Stellacci, L. M. Liz-Marzán. Gold nanostar-coated polystyrene beads as multifunctional nanoprobes for SERS bioimaging. J. Phys. Chem. C, 120, 20860-20868(2016).

    [31] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun., 6, 7788(2015).

    [32] K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, X. Zhang. Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers. Opt. Express, 24, 17916-17927(2016).

    Dipa Ghindani, Alireza R. Rashed, Humeyra Caglayan, "Unveiling spontaneous emission enhancement mechanisms in metal–insulator–metal nanocavities," Photonics Res. 9, 237 (2021)
    Download Citation