• Photonics Research
  • Vol. 9, Issue 2, 237 (2021)
Dipa Ghindani, Alireza R. Rashed, and Humeyra Caglayan*
Author Affiliations
  • Faculty of Engineering and Natural Sciences, Photonics, Tampere University, 33720 Tampere, Finland
  • show less
    DOI: 10.1364/PRJ.411456 Cite this Article Set citation alerts
    Dipa Ghindani, Alireza R. Rashed, Humeyra Caglayan. Unveiling spontaneous emission enhancement mechanisms in metal–insulator–metal nanocavities[J]. Photonics Research, 2021, 9(2): 237 Copy Citation Text show less
    References

    [1] H. Walther, B. T. H. Varcoe, B.-G. Englert, T. Becker. Cavity quantum electrodynamics. Rep. Prog. Phys., 69, 1325-1382(2006).

    [2] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [3] Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, Q. Xiong. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun., 5, 4953(2014).

    [4] A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, C. Voisin. Widely tunable single-photon source from a carbon nanotube in the Purcell regime. Phys. Rev. Lett., 116, 247402(2016).

    [5] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics, 4, 174-177(2010).

    [6] W. L. Barnes. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt., 45, 661-699(1998).

    [7] J. R. Lakowicz. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem., 337, 171-194(2005).

    [8] E. Fort, S. Grésillon. Surface enhanced fluorescence. J. Phys. D, 41, 013001(2007).

    [9] A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, E. Yablonovitch. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B, 66, 153305(2002).

    [10] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater., 3, 601-605(2004).

    [11] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, S. Noda. Control of light emission by 3D photonic crystals. Science, 305, 227-229(2004).

    [12] K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, Y. Arakawa. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nat. Photonics, 2, 688-692(2008).

    [13] Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, H.-C. Wu. Fluorescence enhancement by surface gratings. Opt. Express, 14, 10825-10830(2006).

    [14] Y. Liu, S. Blair. Fluorescence enhancement from an array of subwavelength metal apertures. Opt. Lett., 28, 507-509(2003).

    [15] S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97, 017402(2006).

    [16] O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen. Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater., 18, 91-95(2006).

    [17] H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, P.-F. Lenne. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett., 95, 117401(2005).

    [18] M. Pelton. Modified spontaneous emission in nanophotonic structures. Nat. Photonics, 9, 427-435(2015).

    [19] N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913-3961(2011).

    [20] Y. Kurokawa, H. T. Miyazaki. Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B, 75, 035411(2007).

    [21] F. Ding, L. Mo, J. Zhu, S. He. Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber. Appl. Phys. Lett., 106, 061108(2015).

    [22] Z. Li, S. Butun, K. Aydin. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photon., 2, 183-188(2015).

    [23] A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, E. Ozbay. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photon. Res., 6, 168-176(2018).

    [24] S. Prayakarao, D. Miller, D. Courtwright, C. E. Bonner, M. A. Noginov. Non-resonant enhancement of spontaneous emission of HITC dye in metal-insulator-metal waveguides. J. Opt. Soc. Am. B, 36, 2312-2316(2019).

    [25] M. Nyman, A. Shevchenko, I. Shavrin, Y. Ando, K. Lindfors, M. Kaivola. Large-area enhancement of far-field fluorescence intensity using planar nanostructures. APL Photon., 4, 076101(2019).

    [26] A. R. Rashed, M. Habib, N. Das, E. Ozbay, H. Caglayan. Plasmon-modulated photoluminescence enhancement in hybrid plasmonic nano-antennas. New J. Phys., 22, 093033(2020).

    [27] R. Fan, Y. Xia, D. Chen. Solid state dye lasers based on LDS 698 doped in modified polymethyl methacrylate. Opt. Express, 16, 9804-9810(2008).

    [28] C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, G. F. Strouse. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc., 127, 3115-3119(2005).

    [29] G.-C. Li, Q. Zhang, S. A. Maier, D. Lei. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics, 7, 1865-1889(2018).

    [30] A. B. Serrano-Montes, J. Langer, M. Henriksen-Lacey, D. Jimenez de Aberasturi, D. M. Solís, J. M. Taboada, F. Obelleiro, K. Sentosun, S. Bals, A. Bekdemir, F. Stellacci, L. M. Liz-Marzán. Gold nanostar-coated polystyrene beads as multifunctional nanoprobes for SERS bioimaging. J. Phys. Chem. C, 120, 20860-20868(2016).

    [31] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun., 6, 7788(2015).

    [32] K. L. Tsakmakidis, R. W. Boyd, E. Yablonovitch, X. Zhang. Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers. Opt. Express, 24, 17916-17927(2016).

    Dipa Ghindani, Alireza R. Rashed, Humeyra Caglayan. Unveiling spontaneous emission enhancement mechanisms in metal–insulator–metal nanocavities[J]. Photonics Research, 2021, 9(2): 237
    Download Citation