• Advanced Photonics Nexus
  • Vol. 2, Issue 6, 066007 (2023)
Zhiwei Huang1, Sergey Sergeyev2,*, Qing Wang2, Hani Kbashi2..., Dmitrii Stoliarov2, Qianqian Huang1, Yuze Dai3, Zhijun Yan3 and Chengbo Mou1,*|Show fewer author(s)
Author Affiliations
  • 1Shanghai University, Shanghai Institute for Advanced Communication and Data Science, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communications, Shanghai, China
  • 2Aston University, Aston Institute of Photonic Technologies, Birmingham, United Kingdom
  • 3Huazhong University of Science and Technology, School of Optical and Electronic Information and NGIA, Wuhan, China
  • show less
    DOI: 10.1117/1.APN.2.6.066007 Cite this Article Set citation alerts
    Zhiwei Huang, Sergey Sergeyev, Qing Wang, Hani Kbashi, Dmitrii Stoliarov, Qianqian Huang, Yuze Dai, Zhijun Yan, Chengbo Mou, "Dissipative soliton breathing dynamics driven by desynchronization of orthogonal polarization states," Adv. Photon. Nexus 2, 066007 (2023) Copy Citation Text show less
    References

    [1] K. P. O’Keeffe, H. Hong, S. H. Strogatz. Oscillators that sync and swarm. Nat. Commun., 8, 1504(2017).

    [2] H. Mancini, G. Vidal. Dynamics of two coupled chaotic systems driven by external signals. Eur. Phys. J. D, 62, 57(2011).

    [3] W. Bialek et al. Statistical mechanics for natural flocks of birds. Proc. Natl. Acad. Sci. U. S. A., 109, 4786(2012).

    [4] L. Minati et al. Distributed sensing via inductively coupled single-transistor chaotic oscillators: a new approach and its experimental proof-of-concept. IEEE Access, 7, 174793(2019).

    [5] Z. Chang et al. Real-time dynamics of optical controlling for bound states of mode-locked fiber laser with short-range interaction. Opt. Laser Technol., 149, 107859(2022).

    [6] X. Wu et al. Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers. Nat. Commun., 13, 5784(2022).

    [7] T. Xian et al. Subharmonic entrainment breather solitons in ultrafast lasers. Phys. Rev. Lett., 125, 163901(2020).

    [8] Y. Du, Z. Xu, X. Shu. Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser. Opt. Lett., 43, 3602(2018).

    [9] J. Peng et al. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv., 5, eaax1110(2019).

    [10] J. M. Dudley et al. Instabilities, breathers and rogue waves in optics. Nat. Photonics, 8, 755(2014).

    [11] S. Chouli, P. Grelu. Rains of solitons in a fiber laser. Opt. Express, 17, 11776(2009).

    [12] S. Chouli, P. Grelu. Soliton rains in a fiber laser: an experimental study. Phys. Rev. A, 81, 063829(2010).

    [13] S. V. Sergeyev, M. Eliwa, H. Kbashi. Polarization attractors driven by vector soliton rain. Opt. Express, 30, 35663(2022).

    [14] H. J. Kbashi et al. Mulitiscale spatiotemporal structures in mode-locked fiber lasers. Laser Phys. Lett., 17, 035103(2020).

    [15] H. Kbashi et al. Bright-dark rogue waves. Ann. Phys., Lpz., 530, 1700362(2018).

    [16] H. J. Kbashi et al. Vector soliton breathing dynamics. Laser Phys. Lett., 16, 035103(2019).

    [17] X. Liu, M. Pang. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers. Laser Photonics Rev., 13, 1800333(2019).

    [18] S. Sergeyev, S. Kolpakov, Y. Loika. Vector harmonic mode-locking by acoustic resonance. Photonics Res., 9, 1432(2021).

    [19] K. Sulimany et al. Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser. Phys. Rev. Lett., 121, 133902(2018).

    [20] W. He et al. Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions. Nat. Commun., 10, 5756(2019).

    [21] F. Sanchez et al. Manipulating dissipative soliton ensembles in passively mode-locked fiber lasers. Opt. Fiber Technol., 20, 562(2014).

    [22] H.-G. Purwins, H. U. Bödeker, S. Amiranashvili. Dissipative solitons. Adv. Phys., 59, 485(2010).

    [23] N. Akhmediev, A. Ankiewicz. Dissipative Solitons(2005).

    [24] M. Pang et al. Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core. Optica, 339(2015).

    [25] R. Weill et al. Noise-mediated Casimir-like pulse interaction mechanism in lasers: supplementary material. Optica, 3, 189(2016).

    [26] Y. Li et al. Statistical dynamics of noise-like rectangle pulse fiber laser. Adv. Photonics Nexus, 2, 036005(2023).

    [27] Y. Song et al. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photonics, 2, 024001(2020).

    [28] S. Sergeyev, C. Mou. Polarization Dynamics of Mode-Locked Fiber Lasers: Science, Technology and Applications(2023).

    [29] S. V. Sergeyev. Fast and slowly evolving vector solitons in mode-locked fibre lasers. Phil. Trans. R. Soc. A., 372, 20140006(2014).

    [30] S. V. Sergeyev et al. Spiral attractor created by vector solitons. Light Sci. Appl., 3, e131(2014).

    [31] Y. Du et al. Alternation of the mode synchronization and desynchronization in ultrafast fiber laser. Laser Photonics Rev., 14, 1900219(2020).

    [32] C. Bao et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [33] A. Mussot et al. Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence. Nat. Photonics, 12, 303(2018).

    [34] Y. Han et al. Paths from stationary to chaos in passively mode-locked fiber lasers: research progress of soliton pulsations and soliton explosions. J. Phys. B: At. Mol. Opt. Phys., 55, 222001(2022).

    [35] Q. Wu et al. Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude. Photonics Res., 11, 35(2023).

    [36] Q. Wang et al. Q-switched and vector soliton pulses from an Er-doped fiber laser with high stability based on a γ-graphyne saturable absorber. Nanoscale, 15, 7566(2023).

    [37] C. P. Silva. Shil’nikov’s theorem: a tutorial. EEE Trans. Circuits Syst. I Regul. Pap., 40, 675(1993).

    [38] G. Ansmann et al. Extreme events in excitable systems and mechanisms of their generation. Phys. Rev. E, 88, 052911(2013).

    [39] A. Arenas et al. Synchronization in complex networks. Phys. Rep., 469, 93(2008).

    [40] G. Tigan, D. Opriş. Analysis of a 3D chaotic system. Chaos, Solitons Fractals, 36, 1315(2008).

    [41] I. M. Ovsyannikov, L. P. Shil’nikov. Systems with a homoclinic curve of multidimensional saddle-focus, and spiral chaos. Math. USSR Sb., 73, 415(1992).

    [42] A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: A Universal Concept in Nonlinear Sciences(2001).

    Zhiwei Huang, Sergey Sergeyev, Qing Wang, Hani Kbashi, Dmitrii Stoliarov, Qianqian Huang, Yuze Dai, Zhijun Yan, Chengbo Mou, "Dissipative soliton breathing dynamics driven by desynchronization of orthogonal polarization states," Adv. Photon. Nexus 2, 066007 (2023)
    Download Citation