• Nano-Micro Letters
  • Vol. 16, Issue 1, 144 (2024)
Tingting Liu1、2、4、5、†, Han Wu3、†, Hao Wang1、4、5, Yiran Jiao3, Xiaofan Du1、4、5, Jinzhi Wang1、4、5, Guangying Fu1、4、5, Yaojian Zhang1、4、5、*, Jingwen Zhao1、4、5、**, and Guanglei Cui1、2、4、5、***
Author Affiliations
  • 1Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People’s Republic of China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
  • 3School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
  • 4Shandong Energy Institute, Qingdao, 266101, People’s Republic of China
  • 5Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01340-5 Cite this Article
    Tingting Liu, Han Wu, Hao Wang, Yiran Jiao, Xiaofan Du, Jinzhi Wang, Guangying Fu, Yaojian Zhang, Jingwen Zhao, Guanglei Cui. A Molecular-Sieving Interphase Towards Low-Concentrated Aqueous Sodium-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 144 Copy Citation Text show less
    References

    [1] W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    [2] C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016).

    [3] K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18, e2107662 (2022).

    [4] P. Liu, T. Zhan, X. Chen, H. Li, Q. Wang et al., Regulating phase stability of O3-type-layered oxide cathode via Zn2+ substitution. J. Phys. Chem. C 127, 20632–20639 (2023).

    [5] H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    [6] D. Chao, S.-Z. Qiao, Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4, 1846–1851 (2020).

    [7] J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 (2020).

    [8] Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu et al., Formation of solid–electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Energy Mater. 10, 1903665 (2020).

    [9] L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017).

    [10] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    [11] M. Peng, L. Wang, L. Li, Z. Peng, X. Tang et al., Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. Science 1, 83–90 (2021).

    [12] J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017).

    [13] C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    [14] H. Ao, C. Chen, Z. Hou, W. Cai, M. Liu et al., Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries. J. Mater. Chem. A 8, 14190–14197 (2020).

    [15] R. Chua, Y. Cai, P.Q. Lim, S. Kumar, R. Satish et al., Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage. ACS Appl. Mater. Interfaces 12, 22862–22872 (2020).

    [16] Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 (2023).

    [17] J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, e2101649 (2021).

    [18] T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9, 6013–6028 (2021).

    [19] K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu et al., Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017).

    [20] J.-Y. Liang, X.-D. Zhang, X.-X. Zeng, M. Yan, Y.-X. Yin et al., Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries. Angew. Chem. Int. Ed. 59, 6585–6589 (2020).

    [21] Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33, 2300339 (2023).

    [22] J. Zhang, C. Cui, P.-F. Wang, Q. Li, L. Chen et al., “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).

    [23] C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    [24] Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    [25] E. Kendrick, J. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007).

    [26] J.J. Velasco-Velez, C.H. Wu, T.A. Pascal, L.F. Wan, J. Guo et al., Interfacial water. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014).

    [27] Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572–15581 (2021).

    [28] W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557–1574 (2020).

    [29] K.A. Mauritz, R.B. Moore, State of understanding of nafion. Chem. Rev. 104, 4535–4586 (2004).

    [30] J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11, 3704–3707 (2018).

    [31] Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020).

    [32] X. Liao, L. Ren, D. Chen, X. Liu, H. Zhang, Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes. J. Power. Sour. 286, 258–263 (2015).

    [33] H. Sun, Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998).

    [34] A.A. Samoletov, C.P. Dettmann, M.A.J. Chaplain, Thermostats for “slow” configurational modes. J. Stat. Phys. 128, 1321–1336 (2007).

    [35] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    [36] P.P. Ewald, VII. das „reziproke gitter“in der strukturtheorie. Z. Kristallogr. Cryst. Mater. 56, 129–156 (1921).

    [37] M.P. Tosi, Cohesion of ionic solids in the born model Solid state physics (Elsevier, Amsterdam, 1964), pp.1–120.

    [38] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    [39] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996).

    [40] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    [41] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    [42] M. Fishman, H.L. Zhuang, K. Mathew, W. Dirschka, R.G. Hennig, Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87, 245402 (2013).

    [43] K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    [44] I.C. Medeiros-Costa, E. Dib, N. Nesterenko, J.-P. Dath, J.-P. Gilson et al., Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chem. Soc. Rev. 50, 11156–11179 (2021).

    [45] S. Byun, Y. Jeong, J. Park, S. Kim, H. Ha et al., Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ion. 177, 3233–3243 (2006).

    [46] J.M. Choi, R. Patel, J. Han, B.R. Min, Proton conducting composite membranes comprising sulfonated poly(1, 4-phenylene sulfide) and zeolite for fuel cell. Ionics 16, 403–408 (2010).

    [47] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    [48] L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55, 7136–7141 (2016).

    [49] C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. U.S.A. 114, 6197–6202 (2017).

    [50] J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8, 4362–4367 (2017).

    [51] L. Droguet, A. Grimaud, O. Fontaine, J.-M. Tarascon, Water-in-salt electrolyte (WiSE) for aqueous batteries: a long way to practicality. Adv. Energy Mater. 10, 2002440 (2020).

    [52] L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019).

    Tingting Liu, Han Wu, Hao Wang, Yiran Jiao, Xiaofan Du, Jinzhi Wang, Guangying Fu, Yaojian Zhang, Jingwen Zhao, Guanglei Cui. A Molecular-Sieving Interphase Towards Low-Concentrated Aqueous Sodium-Ion Batteries[J]. Nano-Micro Letters, 2024, 16(1): 144
    Download Citation