• Photonics Research
  • Vol. 13, Issue 6, 1674 (2025)
Chunxu Wang1,2, Jingcui Song1,5,*, Zhaohuan Ao1, Yingyu Chen1..., Yongguang Xiao1, Yifan Zhang1,6,*, Qingming Chen3,4,7,*, Xingwen Yi1, Xueyang Li2 and Zhaohui Li1,4|Show fewer author(s)
Author Affiliations
  • 1School of Electronics and Information Technology and Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China
  • 2Peng Cheng Laboratory, Shenzhen 518000, China
  • 3School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519000, China
  • 4Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • 5e-mail: songjc3@mail.sysu.edu.cn
  • 6e-mail: zhangyf376@mail.sysu.edu.cn
  • 7e-mail: chenqm28@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.555158 Cite this Article Set citation alerts
    Chunxu Wang, Jingcui Song, Zhaohuan Ao, Yingyu Chen, Yongguang Xiao, Yifan Zhang, Qingming Chen, Xingwen Yi, Xueyang Li, Zhaohui Li, "Efficient on-chip waveguide amplifiers in GeSbS-loaded etchless erbium-doped lithium niobate thin film," Photonics Res. 13, 1674 (2025) Copy Citation Text show less
    References

    [1] K. H. Yla-Jarkko, C. Codemard, J. Singleton. Low-noise intelligent cladding-pumped L-band EDFA. IEEE Photonics Technol. Lett., 15, 909-911(2003).

    [2] M. C. Paul, S. W. Harun, N. A. D. Huri. Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber. J. Lightwave Technol., 28, 2919-2924(2010).

    [3] P. J. Winzer, D. T. Neilson, A. R. Chraplyvy. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express, 26, 24190-24239(2018).

    [4] J. D. B. Bradley, M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev., 5, 368-403(2011).

    [5] Q. Luo, F. Bo, Y. Kong. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv. Photonics, 5, 034002(2023).

    [6] Y. Zhang, Q. Luo, D. Zheng. Highly efficient on-chip erbium-ytterbium co-doped lithium niobate waveguide amplifiers. Photonics Res., 11, 1733-1737(2023).

    [7] M. Wang, Z. Fang, J. Lin. Integrated active lithium niobate photonic devices. Jpn. J. Appl. Phys., 62, SC0801(2023).

    [8] X. Xue, J. Qiu, T. Ding. Integrated erbium-doped waveguide amplifier on lithium niobate on insulator. Opt. Mater. Express, 14, 1985-1994(2024).

    [9] M. Cai, T. Li, X. Zhang. Gain dynamics in integrated waveguide amplifier based on erbium-doped thin-film lithium niobate. ACS Photonics, 11, 4923-4932(2024).

    [10] Y. Liu, Z. Qiu, X. Ji. A photonic integrated circuit-based erbium-doped amplifier. Science, 376, 1309-1313(2022).

    [11] H. Zhang, Y. He, S. Zhu. Atomic-layer engineered erbium-doped waveguide amplifier with a 14.4 dB net gain. ACS Photonics, 12, 674-683(2024).

    [12] D. B. Bonneville, C. E. Osornio-Martinez, M. Dijkstra. High on-chip gain spiral Al2O3:Er3+ waveguide amplifiers. Opt. Express, 32, 15527-15536(2024).

    [13] J. Rönn, W. Zhang, A. Autere. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun., 10, 432(2019).

    [14] C. Wang, M. Zhang, X. Chen. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [15] J. Yi, C. Guo, Z. Ruan. Anisotropy-free arrayed waveguide gratings on X-cut thin film lithium niobate platform of in-plane anisotropy. Light Sci. Appl., 13, 147(2024).

    [16] X. Liang, H. Guan, K. Luo. Van der Waals integrated LiNbO3/WS2 for high-performance UV-Vis-NIR photodetection. Laser Photonics Rev., 17, 2300286(2023).

    [17] V. Snigirev, A. Riedhauser, G. Lihachev. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature, 615, 411-417(2023).

    [18] H. Feng, T. Ge, X. Guo. Integrated lithium niobate microwave photonic processing engine. Nature, 627, 80-87(2024).

    [19] Z. Chen, Q. Xu, K. Zhang. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161-1164(2021).

    [20] R. Bao, Z. Fang, J. Liu. An erbium-doped waveguide amplifier on thin film lithium niobate with an output power exceeding 100 mW. Laser Photonics Rev., 19, 2400765(2024).

    [21] Y. Liang, J. Zhou, Z. Liu. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics, 11, 1033-1040(2022).

    [22] R. Bao, L. Song, J. Chen. On-chip coherent beam combination of waveguide amplifiers on Er3+-doped thin film lithium niobate. Opt. Lett., 48, 6348-6351(2023).

    [23] Z. Shen, Z. Wang, Y. Shen. Compact photonic device based on chalcogenide glass loaded lithium niobate on insulator. Opt. Lett., 50, 121-124(2025).

    [24] A. Rao, A. Patil, J. Chiles. Heterogeneous micro ring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).

    [25] L. Wan, Z. Yang, W. Zhou. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl., 11, 145(2022).

    [26] J. Song, Y. Peng, X. Guo. Efficient parametric frequency conversions in chalcogenide-loaded etchless thin-film lithium niobate waveguides. Laser Photonics Rev., 18, 2301128(2024).

    [27] C. Wang, J. Song, Z. Ao. High-gain waveguide amplifiers in Ge25Sb10S65 photonics heterogeneous integration with erbium-doped Al2O3 thin films. Laser Photonics Rev., 18, 2300893(2024).

    [28] Y. Wang, B. Wang, B. Shen. Erbium-doped lithium niobate on insulator waveguide amplifier with ultra-high internal net gain of 38 dB. CLEO, ATu4M.3(2024).

    [29] J. Zhou, Y. Liang, Z. Liu. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).

    [30] J. Mu, M. Dijkstra, J. Korterik. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration. Photonics Res., 8, 1634-1641(2020).

    [31] K. Yoshimoto, Y. Ezura, M. Ueda. 2.7 μm mid-infrared emission in highly erbium-doped lanthanum gallate glasses prepared via an aerodynamic levitation technique. Adv. Opt. Mater., 6, 1701283(2018).

    [32] Z. Zhang, R. Liu, W. Wang. On-chip Er-doped Ta2O5 waveguide amplifiers with a high internal net gain. Opt. Lett., 48, 5799-5802(2023).

    Chunxu Wang, Jingcui Song, Zhaohuan Ao, Yingyu Chen, Yongguang Xiao, Yifan Zhang, Qingming Chen, Xingwen Yi, Xueyang Li, Zhaohui Li, "Efficient on-chip waveguide amplifiers in GeSbS-loaded etchless erbium-doped lithium niobate thin film," Photonics Res. 13, 1674 (2025)
    Download Citation