• Advanced Photonics
  • Vol. 7, Issue 4, 046006 (2025)
Jiacheng Sun1,2,†, Wenjing Shen1, Junyi Wang1,2, Rongtao Yu1,2..., Jian Li1, Chunyu Huang1, Xin Ye1, Zhaoyu Cheng2, Jiefu Yu2, Peng Wang2, Chen Chen1,*, Shining Zhu1 and Tao Li1,*|Show fewer author(s)
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China
  • 2MetaCV Technology Co., Ltd., Nanjing, China
  • show less
    DOI: 10.1117/1.AP.7.4.046006 Cite this Article Set citation alerts
    Jiacheng Sun, Wenjing Shen, Junyi Wang, Rongtao Yu, Jian Li, Chunyu Huang, Xin Ye, Zhaoyu Cheng, Jiefu Yu, Peng Wang, Chen Chen, Shining Zhu, Tao Li, "High-resolution and wide-field microscopic imaging with a monolithic meta-doublet under annular illumination," Adv. Photon. 7, 046006 (2025) Copy Citation Text show less
    References

    [1] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011). https://doi.org/10.1126/science.1210713

    [2] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersionengineered metasurfaces. Nat. Rev. Mater., 5, 604-620(2020). https://doi.org/10.1038/s41578-020-0203-3

    [3] T. Li et al. Revolutionary meta-imaging: from superlens to metalens. Photonics Insights, 2, R01(2023). https://doi.org/10.3788/PI.2023.R01

    [4] L. L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012). https://doi.org/10.1021/nl303031j

    [5] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012). https://doi.org/10.1021/nl3032668

    [6] N. F. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014). https://doi.org/10.1038/nmat3839

    [7] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015). https://doi.org/10.1038/nnano.2015.186

    [8] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018). https://doi.org/10.1515/nanoph-2017-0129

    [9] H. Wang et al. Independent phase manipulation of co- and cross-polarizations with all-dielectric metasurface. Chin. Opt. Lett., 19, 053601(2021). https://doi.org/10.3788/COL202119.053601

    [10] J. Li et al. Dual-band independent phase control based on high efficiency metasurface. Chin. Opt. Lett., 19, 100501(2021). https://doi.org/10.3788/COL202119.100501

    [11] C. Chen et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Lett., 21, 1815-1821(2021). https://doi.org/10.1021/acs.nanolett.0c04902

    [12] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017). https://doi.org/10.1126/science.aam8100

    [13] M. S. Faraji-Dana et al. Compact folded metasurface spectrometer. Nat. Commun., 9, 4196(2018). https://doi.org/10.1038/s41467-018-06495-5

    [14] E. Arbabi et al. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics, 5, 3132-3140(2018). https://doi.org/10.1021/acsphotonics.8b00362

    [15] Y. Zhou et al. Flat optics for image differentiation. Nat. Photonics, 14, 316-323(2020). https://doi.org/10.1038/s41566-020-0591-3

    [16] C. Chen et al. Highly efficient metasurface quarter‐wave plate with wave front engineering. Adv. Photonics Res., 2, 2000154(2021). https://doi.org/10.1002/adpr.202000154

    [17] M. Miyata et al. Full-color-sorting metalenses for high-sensitivity image sensors. Optica, 8, 1596-1604(2021). https://doi.org/10.1364/OPTICA.444255

    [18] J. Ji et al. On-chip multifunctional metasurfaces with full-parametric multiplexed Jones matrix. Nat. Commun., 15, 8271(2024). https://doi.org/10.1038/s41467-024-52476-2

    [19] C. Chen et al. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019). https://doi.org/10.1038/s41377-019-0208-0

    [20] X. Ye et al. Chip-scale metalens microscope for wide-field and depth-of-field imaging. Adv. Photonics, 4, 046006(2022). https://doi.org/10.1117/1.AP.4.4.046006

    [21] J. Chen et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431-437(2022). https://doi.org/10.1364/OPTICA.446063

    [22] J. Ji et al. High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption. PhotoniX, 5, 13(2024). https://doi.org/10.1186/s43074-024-00125-8

    [23] H. W. Liang et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett., 18, 4460-4466(2018). https://doi.org/10.1021/acs.nanolett.8b01570

    [24] L. Li et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv., 10, eadl0501(2024). https://doi.org/10.1126/sciadv.adl0501

    [25] X. Wang et al. Single-shot isotropic differential interference contrast microscopy. Nat. Commun., 14, 2063(2023). https://doi.org/10.1038/s41467-023-37606-6

    [26] Y. Luo et al. Varifocal metalens for optical sectioning fluorescence microscopy. Nano Lett., 21, 5133-5142(2021). https://doi.org/10.1021/acs.nanolett.1c01114

    [27] H. Kwon et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 14, 109-114(2020). https://doi.org/10.1038/s41566-019-0536-x

    [28] Y. Long et al. Metalens-based stereoscopic microscope. Photonics Res., 10, 1501-1508(2022). https://doi.org/10.1364/PRJ.456638

    [29] Y. Liu et al. Meta-objective with sub-micrometer resolution for microendoscopes. Photonics Res., 9, 106-115(2021). https://doi.org/10.1364/PRJ.406197

    [30] Y. Kim et al. Spiral metalens for phase contrast imaging. Adv. Funct. Mater., 32, 2106050(2022). https://doi.org/10.1002/adfm.202106050

    [31] C. Wang et al. Miniature two-photon microscopic imaging using dielectric metalens. Nano Lett., 23, 8256-8263(2023). https://doi.org/10.1021/acs.nanolett.3c02439

    [32] C. Sun et al. Near‐infrared metalens empowered dual‐mode high resolution and large FOV microscope. Adv. Opt. Mater., 12, 00512(2024). https://doi.org/10.1002/adom.202400512

    [33] E. Arbabi et al. Two-photon microscopy with a double-wavelength metasurface objective lens. Nano Lett., 18, 4943-4948(2018). https://doi.org/10.1021/acs.nanolett.8b01737

    [34] J. Park et al. Review of bio-optical imaging systems with a high space-bandwidth product. Adv. Photonics, 3, 044001(2021). https://doi.org/10.1117/1.AP.3.4.044001

    [35] A. Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016). https://doi.org/10.1038/ncomms13682

    [36] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902-4907(2017). https://doi.org/10.1021/acs.nanolett.7b01888

    [37] X. G. Luo et al. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11, 1-20(2021). https://doi.org/10.1515/nanoph-2021-0583

    [38] F. Yang et al. Wide field-of-view metalens: a tutorial. Adv. Photonics, 5, 033001(2023). https://doi.org/10.1117/1.AP.5.3.033001

    [39] G. Jin et al. Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens. Bioelectron., 38, 126-131(2012). https://doi.org/10.1016/j.bios.2012.05.022

    [40] A. C. Sobieranski et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light Sci. Appl., 4, e346(2015). https://doi.org/10.1038/lsa.2015.119

    [41] A. Ozcan, E. McLeod. Lensless imaging and sensing. Annu. Rev. Biomed. Eng., 18, 77-102(2016). https://doi.org/10.1146/annurev-bioeng-092515-010849

    [42] J. W. Goodman. Introduction to Fourier Optics(2005).

    [43] J. Ruiz-Santaquiteria et al. Low-cost oblique illumination: an image quality assessment. J. Biomed. Opt., 23, 016001(2018). https://doi.org/10.1117/1.JBO.23.1.016001

    [44] C. Sanchez et al. Oblique illumination in microscopy: a quantitative evaluation. Micron, 11, 006(2018). https://doi.org/10.1016/j.micron.2017.11.006

    [45] B. Chen et al. Resolution doubling in light-sheet microscopy via oblique plane structured illumination. Nat. Methods, 19, 1419-1426(2022). https://doi.org/10.1038/s41592-022-01635-8

    [46] J. Wang et al. Quantitative phase imaging with a compact meta-microscope. NPJ Nanophotonics, 1, 00007(2024). https://doi.org/10.1038/s44310-024-00007-8

    [47] C. H. Chu et al. Intelligent phase contrast meta-microscope system. Nano Lett., 23, 11630-11637(2023). https://doi.org/10.1021/acs.nanolett.3c03484

    Jiacheng Sun, Wenjing Shen, Junyi Wang, Rongtao Yu, Jian Li, Chunyu Huang, Xin Ye, Zhaoyu Cheng, Jiefu Yu, Peng Wang, Chen Chen, Shining Zhu, Tao Li, "High-resolution and wide-field microscopic imaging with a monolithic meta-doublet under annular illumination," Adv. Photon. 7, 046006 (2025)
    Download Citation