[2] XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Constr Build Mater, 2017, 155(30): 1101-1111.
[4] NIU D T, SU L, LUO Y, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete[J]. Constr Build Mater, 2020, 237(20): 117628.
[5] WANG A G, LYU B C, ZHANG Z H, et al. The development of coral concretes and their upgrading technologies: A critical review[J]. Constr Build Mater, 2018, 187: 1004-1019.
[6] HOWDYSHELL P A. The Use of Coral as an Aggregate for Portland Cement Concrete Structures[R]. [S.l.]: Army Constr Eng Res Lab, 1974.
[8] WU W J, WANG R, ZHU C Q, et al. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete[J]. Constr Build Mater, 2018, 185(10): 69-78.
[11] ARUMUGAM R, A, et al. Study of compressive strength characteristics of coral aggregate concrete[J]. Mag Concr Res, 1996, 48(176): 141-148.
[12] DA B, YU H F, MA H Y, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Constr Build Mater, 2016, 122(sep. 30): 81-89.
[14] WANG Z B, ZUO J P, LIU C, et al. Stress-strain properties and gas permeability evolution of hybrid fiber engineered cementitious composites in the process of compression[J]. Materials, 2019, 12(9): 1382.
[15] WANG L, SHEN N, YU D, et al. Strengthening mechanism and microstructures of fiber reinforced coral concrete[J]. Struct Build, 2020(2): 1-29.
[16] LIU B, ZHOU J, WEN X, et al. Experimental investigation on the impact resistance of carbon fibers reinforced coral concrete[J]. Materials (Basel), 2019, 12(23): 4000.
[18] WU Z Y, ZHANG J H, YU H F, et al. Specimen size effect on the splitting-tensile behavior of coral aggregate concrete: A 3D mesoscopic study[J]. Eng Fail Anal, 2021, 127: 105395.
[23] SCHLANGEN E, MIER J. Simple lattice model for numerical simulation of fracture of concrete materials and structures[J]. Mater Struct, 1992, 25(9): 534-542.
[24] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test International Journal of Solids and Structures[J]. Inter J Solids Struct, 2003, 40(2): 343-360.
[25] WANG Z L, LIU Y S, SHEN R F, et al. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Constr Build Mater, 2008, 22(5): 811-819.
[26] TEDESCO J W, ROSS C A, KUENNEN S T J A M J. Experimental and numerical analysis of high strain rate splitting tensile tests[J]. J ACI Mater, 1993, 90(2): 162-169.
[27] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization[J]. Inter J Impact Eng, 2001, 25(9): 869-886.
[30] WANG Z L, SHI Z M, WANG J G, et al. On the strength and toughness properties of SFRC under static-dynamic compression[J]. Composites: Part B, 2011, 42(5): 1285-1290.
[32] JANKOWIAK T, RUSINEK A, VOYIADJIS G Z. Modeling and design of SHPB to characterize brittle materials under compression for high strain rates[J]. Materials (Basel), 2020, 13(9): 2191.
[34] WANG C, SONG R, WANG G, et al. Modifications of the HJC (Holmquist-Johnson-Cook) model for an improved numerical simulation of roller compacted concrete (RCC) structures subjected to impact loadings[J]. Materials (Basel), 2020, 13(6): 1361.
[35] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. J Applied Mech-Transact Asm, 2011, 78(5): 051003.