• Acta Photonica Sinica
  • Vol. 50, Issue 1, 1 (2021)
Hushan WANG1, Huabao CAO1, Liangwen PI1, Pei HUANG1, Xianglin WANG1, Peng XU1, Hao YUAN1、2, Xin LIU1、2, Yishan WANG1、*, Wei ZHAO1, and Yuxi FU1
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an709, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    DOI: 10.3788/gzxb20215001.0132001 Cite this Article
    Hushan WANG, Huabao CAO, Liangwen PI, Pei HUANG, Xianglin WANG, Peng XU, Hao YUAN, Xin LIU, Yishan WANG, Wei ZHAO, Yuxi FU. Research Progress of Attosecond Pulse Generation and Characterization (Invited)[J]. Acta Photonica Sinica, 2021, 50(1): 1 Copy Citation Text show less
    References

    [1] T H MAIMAN. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] F J MCCLUNG, R W HELLWARTH. Giant optical pulsations from ruby. Journal of Applied Physics, 33, 103-105(1962).

    [3] A J DEMARIA, C M FERRAR. Mode locking of a Nd3+-doped glass laser. Applied Physics Letters, 8, 22-24(1966).

    [4] Z CHENG, G TEMPEA, T BRABEC. Generation of intense diffraction-limited white light and 4-fs pulses(1998).

    [5] B SCHENKEL, J BIEGERT, U KELLER. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Optics Letters, 28, 1987-1989(2003).

    [7] S BOHMAN, A SUDA, T KANAI. Generation of 5.0 fs, 5.0 mJ pulses at 1kHz using hollow-fiber pulse compression. Optics Letters, 35, 1887-1889(2010).

    [8] S CHIA, G CIRMI, S FANG. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers. Optica, 1, 315-322(2014).

    [9] T NAGY, M KRETSCHMAR, M VRAKKING. Generation of above-terawatt 1.5-cycle visible pulses at 1 kHz by post-compression in a hollow fiber. Optics Letters, 45, 3313-3316(2020).

    [10] A MCPHERSON, G GIBSON, H JARA. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. Journal of The Optical Society of America B, 4, 595(1987).

    [11] P B CORKUM, N H BURNETT, M Y IVANOV. Subfemtosecond pulses. Optics Letters, 19, 1870(1994).

    [12] M HENTSCHEL, R KIENBERGER, C SPIELMANN. Attosecond metrology. Nature, 414, 509(2001).

    [13] M DRESCHER, M HENTSCHEL, R KIENBERGER. Time-resolved atomic inner-shell spectroscopy. Nature, 419, 803-807(2002).

    [14] A I KULEFF, J BREIDBACH, L S CEDERBAUM. Multielectron wave-packet propagation: General theory and application. Journal of Chemical Physics, 123, 044111(2005).

    [15] Z CHANG, P B CORKUM. Attosecond photon sources: the first decade and beyond. Journal of the Optical Society of America B, 27, 9-10(2010).

    [16] P B CORKUM. Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 71, 1994-1997(1993).

    [17] M LEWENSTEIN, P BALCOU, M Y IVANOV. Theory of high-harmonic generation by low-frequency laser fields. Physical Review A, 49, 2117-2132(1994).

    [18] K C KULANDER, B W SHORE. Calculations of multiple-harmonic conversion of 1064-nm radiation in Xe. Physical Review Letters, 62, 524-527, 1989(1989).

    [19] J L KRAUSE, K J SCHAFER, K C KULANDER. High-order harmonic generation from atoms and ions in the high intensity regime. Physical Review Letters, 68, 3535-3538(1992).

    [20] C SPIELMANN, N H BURNETT, S SARTANIA. Generation of coherent X-rays in the water window using 5 femtosecond laser pulses. Science, 278, 661-664(1997).

    [21] Z CHANG, A RUNDQUIST, H WANG. Generation of coherent soft X rays at 2.7 nm using high harmonics. Physical Review Letters, 79, 2967-2970(1997).

    [22] M SCHNURER, C SPIELMANN, P WOBRAUSCHEK. Coherent 0.5-keV X-ray emission from helium driven by a sub-10-fs laser. Physical Review Letters, 80, 3236-3239(1998).

    [23] H MASHIKO, S GILBERTSON, M CHINI. Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time. Optics Letters, 34, 3337-3339(2009).

    [24] B SHAN, Z CHANG. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Physical Review A, 65, 011804(2001).

    [25] H XIONG, H XU, Y FU. Generation of a coherent X ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source. Optics Letters, 34, 1747-1749(2009).

    [26] E J TAKAHASHI, T KANAI, K L ISHIKAWA. Coherent water window X ray by phase-matched high-order harmonic generation in neutral media. Physical Review Letters, 101, 253901(2008).

    [27] M CHEN, P ARPIN, T POPMINTCHEV. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source. Physical Review Letters, 105, 173901(2010).

    [28] T POPMINTCHEV, M CHEN, D POPMINTCHEV. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287(2012).

    [29] S KAZAMIAS, D DOUILLET, F WEIHE. Global optimization of high harmonic generation. Physical Review Letters, 90, 193901(2003).

    [30] M B GAARDE, J L TATE, K J SCHAFER. Macroscopic aspects of attosecond pulse generation. Journal of Physics B Atomic Molecular & Optical Physics, 41, 132001(2008).

    [31] M LEWENSTEIN, P SALIERES, A L’HUILLIER. Phase of the atomic polarization in high-order harmonic generation. Physical Review A, 52, 4747-4754(1996).

    [32] S KAZAMIAS, S DABOUSSI, O GUILBAUD. Pressure-induced phase matching in high-order harmonic generation. Physical Review A, 83, 063405(2011).

    [33] M SCHNURER, Z CHENG, M HENTSCHEL. Absorption-limited generation of coherent ultrashort soft-X-ray pulses. Physical Review Letters, 83, 722-725(1999).

    [34] A RUNDQUIST, C G DURFEE, Z CHANG. Phase-matched generation of coherent soft X-rays. Science, 280, 1412-1415(1998).

    [35] Y TAMAKI, J ITATANI, Y NAGATA. Highly efficient, phase-matched high-harmonic generation by a self-guided laser beam. Physical Review Letters, 82, 1422-1425(1999).

    [36] Y TAMAKI, Y NAGATA, M OBARA. Phase-matched high-order-harmonic generation in a gas-filled hollow fiber. Physical Review A, 59, 4041-4044(1999).

    [37] A PAUL, R A BARTELS, R TOBEY. Quasi phase matched generation of coherent extreme-ultraviolet light. Nature, 421, 51-54(2003).

    [38] E A GIBASON, A PAUL, N WAGNER. Coherent soft X-ray generation in the water window with quasi-phase matching. Science, 302, 95-98(2003).

    [39] E J TAKAHASHI, T KANAI, K L ISHIKAWA. Dramatic enhancement of high-order harmonic generation. Physical Review Letters, 99, 053904(2007).

    [40] S WATANABE, K KONDO, Y NABEKAWA. Two-color phase control in tunneling ionization and harmonic generation by a strong laser field and its third harmonic. Physical Review Letters, 73, 2692(1994).

    [41] X TONG, S CHU. Generation of circularly polarized multiple high-order harmonic emission from two-color crossed laser beams. Physical Review A, 58, 2656-2659(1998).

    [42] J SERES, E SERES, D HOCHHAUS. Laser–driven amplification of soft X–rays by parametric stimulated emission in neutral gases. Nature Physics, 6, 455-461(2010).

    [43] C SERRAT. Coherent extreme ultraviolet light amplification by strong–field–enhanced forward scattering. Physical Review Letters, 111, 133902(2013).

    [44] C SERRAT, J SERES, E SERES. Parametric attosecond pulse amplification far from the ionization threshold from high order harmonic generation in He+. Optics Express, 28, 24243(2020).

    [45] F QUERE, C THAURY, P MONOT. Coherent wake emission of high-order harmonics from overdense plasmas. Physical Review Letters, 96, 125004(2006).

    [46] R LICHTERS, J MEYERTERVEHN, A PUKHOV. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Physics of Plasmas, 3, 3425-3437(1996).

    [47] A PUKHOV, D BRUGGE, I KOSTYUKOV. Relativistic laser plasmas for electron acceleration and short wavelength radiation generation. Plasma Physics & Controlled Fusion, 52, 191-223(2010).

    [48] B DROMEY, S RYKOVANOV, M YEUNG. Coherent synchrotron emission from electron nanobunches formed in relativistic laser-plasma interactions. Nature Physics, 8, 804-808(2012).

    [49] B DROMEY, S COUSENS, S RYKOVANOV. Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas. New Journal of Physics, 15, 015025(2013).

    [50] S GHIMIRE, A D DICHIARA, E SISTRUNK. Observation of high-order harmonic generation in a bulk crystal. Nature Physics, 7, 138-141(2011).

    [51] M GARG, S Y KRUCHININ. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature, 521, 498-502(2015).

    [52] G NDABASHIMIYE, S GHIMIRE, M WU. Solid-state harmonics beyond the atomic limit. Nature, 534, 520-523(2016).

    [53] Y S YOU, D A REIS, S GHIMIRE. Anisotropic high-harmonic generation in bulk crystals. Nature Physics, 13, 345-349(2017).

    [54] N YOSHIKAWA, T TAMAYA, K TANAKA. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science, 356, 736-738(2017).

    [55] H LIU, Y LI, Y YOU. High-harmonic generation from an atomically thin semiconductor. Nature Physics, 13, 262-265(2016).

    [56] Y YOU, Y YIN, Y WU. High-harmonic generation in amorphous solids. Nature Communications, 8, 724(2017).

    [57] S GHIMIRE, D A REIS. High-harmonic generation from solids. Nature Physics, 15, 10-16(2019).

    [58] J LI, J LU, A CHEW. Attosecond science based on high harmonic generation from gases and solids. Nature Communications, 11, 2748(2020).

    [59] J LU, E F CUNNINGHAM, Y YOU. Interferometry of dipole phase in high harmonics from solids. Nature Photonics, 13, 96-100(2019).

    [60] R KIENBERGER, E GOULIELMAKIS, M UIBERACKER. Atomic transient recorder. Nature, 427, 817(2004).

    [61] G SANSONE, E BENEDETTI, F CALEGARI. Isolated single-cycle attosecond pulses. Science, 314, 443(2006).

    [62] E GOULIELMAKIS, M SCHULTZE, M HOFSTETTER. Single-cycle nonlinear optics. Science, 320, 1614-1617(2008).

    [63] K ZHAO, Q ZHANG, M CHINI. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics Letters, 37, 3891(2012).

    [64] J LI, X REN, Y YIN. 53-attosecond X-ray pulses reach the carbon K-edge. Nature Communications, 8, 186(2017).

    [65] T GAUMNITZ, A JAIN, Y PERTOT. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Optics Express, 25, 27506-27518(2017).

    [66] M ZHAN, P YE, H TENG. Generation and measurement of isolated 160 attosecond XUV laser pulses at 82 eV. Chinese Physics Letters, 30, 093201(2013).

    [67] X WANG, P XU, J LI. Isolated attosecond pulse with 159 as duration measured by home built attosecond streaking camera. Chinese Journal of Lasers, 47, 0415002(2020).

    [68] Z YANG, W CAO, X CHEN. All-optical frequency-resolved optical gating for isolated attosecond pulse reconstruction. Optics Letters, 45, 567(2020).

    [69] X WANG, L WANG, F XIAO. Generation of 88 as isolated attosecond pulses with double optical gating. Chinese Physics Letters, 37, 023201(2020).

    [70] P ECKLE, A N PFEIFFER, C CIRELLI. Attosecond ionization and tunneling delay time measurements in helium. Science, 322, 1525(2008).

    [71] M SCHULTZE, M FIESS, N KARPOWICZ. Delay in photoemission. Science, 328, 1658(2010).

    [72] J DAHLSTROM, A L’HUILLIER, A MAQUET. Introduction to attosecond time-delays in photoionization. Journal of Physics B Atomic Molecular & Optical Physics, 45, 183001-183032(2012).

    [73] F CALEGARI, D AYUSO, A TRABATTONI. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science, 346, 336(2014).

    [74] E GOULIELMAKIS, A WIRTH. Real-time observation of valence electron motion. Nature, 466, 739-743(2010).

    [75] H WANG, M CHINI, S CHEN. Attosecond time-resolved autoionization of argon. Physical Review Letters, 105, 143002(2010).

    [76] M CHINI, K ZHAO, Z CHANG. The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photonics, 8, 79-80(2014).

    [77] C M HEYL, C L ARNOLD, A COUAIRON. Introduction to macroscopic power scaling principles for high-order harmonic generation. Journal of Physics B, 50, 013001(2017).

    [78] A BALTUSKA, T UDEM, M UIBERACKER. Attosecond control of electronic processes by intense light fields. Nature, 421, 611-615(2003).

    [79] F KRAUSZ, M IVANOV. Attosecond physics. Reviews of Modern Physics, 81, 163-234(2009).

    [80] I J SOLA, E MEVEL, L ELOUGA. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Physics, 2, 319-322(2006).

    [81] U KELLER. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [82] J RAUSCHENBERGER, T FUJI. Carrier-envelope phase-stabilized amplifier system. Laser Physics Letters, 3, 37-42(2006).

    [83] Y FU, E J TAKAHASHI, K MIDORIKAWA. Indirect high-bandwidth stabilization of carrier-envelope phase of a high-energy, low-repetition-rate laser. Optics Express, 24, 13276-13287(2016).

    [84] T WITTING, F FRANK, W A OKELL. Sub-4-fs laser pulse characterization by spatially resolved spectral shearing interferometry and attosecond streaking. Journal of Physics B, 45, 074014(2012).

    [85] H TIMMERS, M SABBAR, J HELLWAGNER. Polarization-assisted amplitude gating as a route to tunable, high-contrast attosecond pulses. Optica, 3, 707(2016).

    [86] S G RYKOVNOV, M Geissler, J MEYER-TER-VEHN. Intense single attosecond pulses from surface harmonics using the polarization gating technique. New Journal of Physics, 10, 025025(2008).

    [87] V T PLATONENKO, V V STRELKOV. Single attosecond soft-X-ray pulse generated with a limited laser beam. Journal of the Optical Society of America B, 16, 435-440(1999).

    [88] B SHAN, S GHIMIRE, Z CHANG. Generation of the attosecond extreme ultraviolet supercontinuum by a polarization gating. Journal of Modern Optics, 52, 277(2005).

    [89] Z CHANG. Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau. Physical Review A, 70, 628-628(2004).

    [90] T PFEIFER, L GALLMANN, M J ABEL. Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field. Optics Letters, 31, 975-977(2006).

    [91] M KAKU, Y OISHI, A SUDA. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field. Optics Express, 14, 7230-7237(2006).

    [92] Z WANG, W HONG, Q ZHANG. Efficient generation of isolated attosecond pulses with high beam-quality by two-color Bessel-Gauss beams. Optics Letters, 37, 238-40(2012).

    [93] P LAN, P LU, W CAO. Isolated sub-100-as pulse generation via controlling electron dynamics. Physical Review A, 76, 011402(2007).

    [94] B ZENG, Y YU, W CHU. Generation of an intense single isolated attosecond pulse by use of two-colour waveform control. Journal of Physics B, 42, 145604(2009).

    [95] E J TAKAHASHI, P LAN, O D MUECKE. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse. Physical Review Letters, 104, 233901(2010).

    [96] E J TAKAHASHI, P LAN, O D MUCKE. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nature Communications, 4, 2691(2013).

    [97] W HONG, Y LI, P LU. Control of quantum paths in the multicycle regime and efficient broadband attosecond pulse generation. Journal of the Optical Society of America B, 25, 1684-1689(2008).

    [98] Z ZENG, Y LENG, R LI. Electron quantum path tuning and isolated attosecond pulse emission driven by a waveform-controlled multi-cycle laser field. Journal of Physics B, 41, 215601(2008).

    [99] H MASHIKO, S GILBERTSON, C LI. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Physical Review Letters, 100, 103906(2008).

    [100] H MASHIKO, M J BELL, A R BECK. Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields. Optics Express, 18, 25887-25895(2010).

    [101] X FENG, S GILBERTSON, H MASHIKO. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Physical Review Letters, 103, 183901(2009).

    [102] H VINCENTI, F QUERE. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Physical Review Letters, 108, 113904(2012).

    [103] F SILVA, S M TEICHMANN, S L COUSIN. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nature Communications, 6611(6).

    [104] C M HEYL, S N BENGTSSON, S CARLSTROM. Noncollinear optical gating. New Journal of Physics, 16, 052001(2014).

    [105] J BERTRAND, H J WORNER, H C BANDULET. Ultrahigh-order wave mixing in noncollinear high harmonic generation. Physical Review Letters, 106, 023001(2011).

    [106] M LOUISY, C L ARNOLD, M MIRANDA. Gating attosecond pulses in a noncollinear geometry. Optica, 2, 563(2015).

    [107] S ZHONG, X HE, Y JIANG. Noncollinear gating for high-flux isolated-attosecond-pulse generation. Physics Review A, 93, 033854(2016).

    [108] P LAN, P LU, C WEI. Attosecond ionization gating for isolated attosecond electron wave packet and broadband attosecond xuv pulses. Physics Review A, 76, 400-403(2007).

    [109] A JULLIEN, T PFEIFER, M J ABEL. Ionization phase-match gating for wavelength-tunable isolated attosecond pulse generation. Applied Physics B, 93, 433-442(2008).

    [110] M J ABEL, T PFEIFER, P M NAGEL. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chemical Physics, 366, 9-14(2009).

    [111] F FERRARI, F CALEGARI, M LUCCHINI. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photonics, 4, 875-879(2010).

    [112] N SAITO, N ISHII, T KANAI. Attosecond streaking measurement of extreme ultraviolet pulses using a long-wavelength electric field. Scientific Reports, 6, 35594(2016).

    [113] J PUPEIKIS, P A CHEVREUIL, N BIGLER. Water window soft X-ray source enabled by 25-W few-cycle mid-IR OPCPA at 100 kHz. Optica, 7, 168(2020).

    [114] H MASHIKO, K OGURI, T YAMAGUCHI. Petahertz optical drive with wide-bandgap semiconductor. Nature Physics, 12, 741-745(2016).

    [115] D HYUK, K KYUNG, T KIM. Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses. Journal of Physics B, 45, 74015-74015(2012).

    [116] E J TAKAHASHI, H HASEGAWA, Y NABEKAWA. High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region. Optics Letters, 29, 507-509(2004).

    [117] Y NABEKAWA, T SHIMIZU, Y FURUKAWA. Interferometry of attosecond pulse trains in the extreme ultraviolet wavelength region. Physical Review Letters, 102, 213904(2009).

    [118] Y NABEKAWA, K MIDORIKAWA. Interferometric autocorrelation of an attosecond pulse train calculated using feasible formulae. New Journal of Physics, 10, 025034(2008).

    [119] J PEATROSS, J L CHALOUPKA, D D MEYERHOFER. High-harmonic generation with an annular laser beam. Optics Letters, 19, 942(1994).

    [120] K KIM, C KIM, M BAIK. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Physics Review A, 69, 051805(2004).

    [121] K KIM, K KANG, M PARK. Self-compression of attosecond high-order harmonic pulses. Physical Review Letters, 99, 223904(2007).

    [122] Z CHANG. Compensating chirp of attosecond X-ray pulses by a neutral hydrogen gas. OSA Continuum, 2, 314(2019).

    [123] M HOFSTETTER, M SCHULTZE, M FIESS. Attosecond dispersion control by extreme ultraviolet multilayer mirrors. Optics Express, 19, 1767-1776(2011).

    [124] C BOURASSINBOUCHET, S ROSSI, J WANG. Shaping of single-cycle sub-50-attosecond pulses with multilayer mirrors. New Journal of Physics, 14, 023040(2012).

    [125] A GUGGENMOS, R RAUHUT, M HOFSTETTER. Aperiodic CrSc multilayer mirrors for attosecond water window pulses. Optics Express, 21, 21728-21740(2013).

    [126] Y ZHENG, Z ZENG, P ZOU. Dynamic chirp control and pulse compression for attosecond high-order harmonic emission. Physical Review Letters, 103, 043904(2009).

    [127] M SCHULTZE, E GOULIELMAKIS. Versatile apparatus for attosecond metrology and spectroscopy. Review of Scientific Instruments, 81, 093103(2010).

    [128] N PAPADOGIANNIS, B WITZEL, C KALPOUZOS. Observation of attosecond light localization in higher order harmonic generation. Physical Review Letters, 83, 4289(1999).

    [129] P TZALLAS, D CHARALAMBIDIS. Direct observation of attosecond light bunching. Nature, 426, 267-271(2003).

    [130] E J TAKAHASHI, P LAN, O D MUCKE. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nature Communications, 4, 1-9(2013).

    [131] A SCRINZE, M GEISSLER, T BRABEC. Attosecond cross correlation technique. Physical Review Letters, 86, 412(2001).

    [132] P M PAUL. Observation of a train of attosecond pulses from high harmonic generation. Science, 292, 1689-1692(2001).

    [133] H G MULLER. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Applied Physics B, 74, 17-21(2002).

    [134] M DRESCHER, M HENTSCHEL, R KIENBERGER. X-ray pulses approaching the attosecond frontier. Science, 291, 1923-1927(2001).

    [135] J ITATANI, F QUERE, G L YUDIN. Attosecond streak camera. Physical Review Letters, 88, 173903(2002).

    [136] Y MAIRESSE, F QUERE. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Physical Review A, 71, 1401(2005).

    [137] M CHINI, S GILBERTSON, S D KHAN. Characterizing ultrabroadband attosecond lasers. Optics Express, 18, 13006(2010).

    [138] N DUDOVICH, O SMIRNOVA, J LEVESQUE. Measuring and controlling the birth of attosecond XUV pulses. Nature Physics, 2, 781-786(2006).

    [139] K KIM, C ZHANG, A D SHINER. Manipulation of quantum paths for space–time characterization of attosecond pulses. Nature Physics, 9, 159(2013).

    [140] F QUERE, J ITATANI, G YUDIN. Attosecond spectral shearing interferometry. Physical Review Letters, 90, 073902(2003).

    [141] J ROTHHARDT, S HADRICH, A KLENKE. 53 W average power few-cycle fiber laser system generating soft X rays up to the water window. Optics Letters, 39, 5224-5227(2014).

    [142] N ISHII, K KANESHIMA, K KITANO. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses. Nature Communications, 5, 3331(2014).

    [143] F SILVA, S M TEICHMANN, S L COUSIN. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nature Communications, 6, 6611(2015).

    [144] G J STEIN, P D KEATHLEY, P KROGEN. Water-window soft X-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source. Journal of Physics B, 49, 155601(2016).

    [145] S TEICHMANN, F SILVA, S COUSIN. 0.5-keV soft X-ray attosecond continua. Nature Communications, 7, 11493(2016).

    [146] C VINCENT, B SCHMIDT, T NICOLAS. Self-channelled high harmonic generation of water window soft X-rays. Journal of Physics B, 51, 174004(2018).

    [147] A S JOHNSON, D R AUSTIN, D A WOOD. High-flux soft X-ray harmonic generation from ionization-shaped few-cycle laser pulses. Science Advances, 4, 3761(2018).

    [148] Y FU, K NISHIMURA, R SHAO. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy. Communications Physics, 3, 92(2020).

    [149] Y FU, K MIDORIKAWA, E J TAKAHASHI. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification. Scientific Reports, 8, 7692(2018).

    [150] Y FU, K MIDORIKAWA, E J TAKAHASHI. Dual-chirped optical parametric amplification: a method for generating super-intense mid-infrared few-cycle pulses. IEEE Journal of Selected Topics in Quantum Electronics, 25, 8800413(2019).

    [151] Y FU, E J TAKAHASHI, K MIDORIKAWA. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. Optics Letters, 40, 5082-5085(2015).

    [152] Y FU, B XUE, E J TAKAHASHI, K MIDORIKAWA. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification. Applied Physics Letters, 112, 241105(2018).

    [153] J DURIS, S LI, T DRIIVER. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nature Photonics, 14, 30-36(2020).

    [154] M T HASSAN, A MOULET. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature, 530, 66(2016).

    [155] K J YUAN, A D BANDRAUK. Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media. Physical Review Letters, 110, 023003(2013).

    [156] O KFIR, P GRYCHTOL, E TURGUT. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nature Photonics, 9, 99-105(2014).

    [157] K M DORNEY, J L ELLIS, C HERNANDEZ-GARCIA. Helicity-selective enhancement and polarization control of attosecond high harmonic waveforms driven by bichromatic circularly polarized laser fields. Physical Review Letters, 119, 063201(2017).

    [158] D D HICKSTEIN, F J DOLLAR, P GRYCHTOL. Non-collinear generation of angularly isolated circularly polarized high harmonics. Nature Photonics, 9, 743-750(2015).

    [159] P HUANG, C HERNANDEZGARCIA, J HUANG. Polarization control of isolated high-harmonic pulses. Nature Photonics, 12, 349-354(2018).

    [160] G LAMBERT, B VODUNGBO, J GAUTIER. Towards enabling femtosecond helicity-dependent spectroscopy with high-harmonic sources. Nature Communications, 6, 6167(2015).

    [161] M ZURCH, C KERN, P HANSINGER. Strong-field physics with singular light beams. Nature Physics, 8, 743-746(2012).

    [162] X ZHANG, B SHEN, Y SHI. Generation of intense high-order vortex harmonics. Physical Review Letters, 114, 173901(2015).

    [163] A DENOEUD, L CHOPINEAU. Interaction of ultraintense laser vortices with plasma mirrors. Physical Review Letters, 118, 033902(2017).

    [164] J WANG, M ZEPF, S G RYKOVANOV. Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions. Nature Communications, 10, 5554(2019).

    CLP Journals

    [1] Yaxian HOU, Rujin ZHAO, Yuebo MA, Longdong HE, Zifa ZHU. An On-orbit Correction Method for High Dynamic APS Star Tracker Based on Adaptive Filtering[J]. Acta Photonica Sinica, 2021, 50(2): 155

    Hushan WANG, Huabao CAO, Liangwen PI, Pei HUANG, Xianglin WANG, Peng XU, Hao YUAN, Xin LIU, Yishan WANG, Wei ZHAO, Yuxi FU. Research Progress of Attosecond Pulse Generation and Characterization (Invited)[J]. Acta Photonica Sinica, 2021, 50(1): 1
    Download Citation