• Optoelectronics Letters
  • Vol. 18, Issue 11, 668 (2022)
S. F. S. M. Noor 1, Ahmad B. A.2, A. Rosol A. H.3、4, Ahmad H.5, Apsari R.4、6, and Harun S. W.3、*
Author Affiliations
  • 1Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2Department of Communication Engineering, Al-Ma'moon University College, Baghdad 700921, Iraq
  • 3Photonics Engineering Laboratory, Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 4Department of Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Surabaya, Indonesia
  • 5Photonics Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 6Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
  • show less
    DOI: 10.1007/s11801-022-2097-3 Cite this Article
    S. F. S. M. Noor, B. A. Ahmad, A. H. A. Rosol, H. Ahmad, R. Apsari, S. W. Harun. Dual-wavelength Q-switched erbium-doped fiber laser using an SMF-MMF-SMF structure and graphene oxide[J]. Optoelectronics Letters, 2022, 18(11): 668 Copy Citation Text show less
    References

    [1] MAJKIC A, ZGONIK M, PETELIN A, et al. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1[J]. Applied physics letters, 2014, 105(14):141115.

    [2] LI S, YIN Y, RAN G, et al. Dual-wavelength mode-locked erbium-doped fiber laser based on tin disulfide thin film as saturable absorber[J]. Journal of applied physics, 2019, 125(24):243104.

    [3] DEBUS C, BOLIVAR P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Applied physics letters, 2007, 91(18):184102.

    [4] ZHANG L, REN G J, YAO J Q. A new photonic crystal fiber gas sensor based on evanescent wave in terahertz wave band:design and simulation[J]. Optoelectronics letters, 2013, 9(6):438-440.

    [5] ZHANG J J, ZHANG X S, LI L, et al. Enhanced mid-infrared emission of non-oxide erbium doped fluorochloride glass[J]. Optoelectronics letters, 2020, 16(5):360-364.

    [6] GUO S, ZHANG A, PAN H. Passively Q-switched fiber laser with single and double wavelength switching based on parallel FBGs[J]. Optik, 2021, 241:166973.

    [7] YAMASHITA S, HOTATE K. Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen[J]. Electronics letters, 1996, 32(14):1298-1299.

    [8] PAN S, LOU C, GAO Y. Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter[J]. Optics express, 2006, 14(3): 1113-1118.

    [9] HAN Y G, TRAN T V A, LEE S B. Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber[J]. Optics letters, 2006, 31(6):697-699.

    [10] LIAN Y, REN G, ZHU B, et al. Switchable multiwavelength fiber laser using erbium-doped twin-core fiber and nonlinear polarization rotation[J]. Laser physics letters, 2017, 14(5):055101.

    [11] WANG Y, LI J, ZHAI B, et al. Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper[J]. Optics express, 2016, 24(14): 15299-15306.

    [12] ZOU C, HUANG Q, WANG T, et al. Single/dual-wavelength switchable bidirectional Q-switched all-fiber laser using a bidirectional fiber polarizer[J]. Optics letters, 2018, 43(19):4819-4822.

    [13] ZHU Y, ZHENG J, DENG H, et al. Refractive index and temperature measurement by cascading macrobending fiber and a sealed alternated SMF-MMF structure[J]. Optics communications, 2021, 485:126738.

    [14] SOBOH R S, AL-MASOODI A H, ERMAN F N, et al. Lawsone dye material as potential saturable absorber for Q-switched erbium doped fiber laser[J]. Optical fiber technology, 2021, 64:102537.

    [15] XU X, ZHAI J, LI L, et al. Passively mode-locking erbium-doped fiber lasers with 0.3 nm single-walled carbon nanotubes[J]. Scientific reports, 2014, 4(1): 6761.

    [16] ISMAIL E I, KADIR N A, LATIFF A A, et al. Black phosphorus crystal as a saturable absorber for both a Q-switched and mode-locked erbium-doped fiber laser[J]. RSC advances, 2016, 6(76):72692-72697.

    [17] ZHOU Y, ZHANG R, CHEN P, et al. Passively Q-switched and mode-locked ytterbium fiber laser with Bi2S3 nanowire[J]. Laser physics, 2019, 29(5):055101.

    [18] RUSDI M F M, MAHYUDDIN M B H, LATIFF A A, et al. Q-switched erbium-doped fiber laser using cadmium selenide coated onto side-polished d-shape fiber as saturable absorber[J]. Chinese physics letters, 2018, 35(10):104201.

    [19] AHMAD H, ZULKIFLI A Z, THAMBIRATNAM K. Tunable Q-switched erbium-doped fiber laser based on curved multimode fiber and graphene oxide saturable absorber[J]. Laser physics, 2017, 27(5):055103.

    [20] AHMAD H, ZULKIFLI A Z, YASIN M, et al. Q-switched dual-wavelength fiber laser using a graphene oxide saturable absorber and singlemode-multimode-singlemode fiber structure[J]. Laser physics letters, 2016, 13(10):105105.

    [21] YANG F, WANG D N, WANG Z, et al. Saturable absorber based on a single mode fiber-graded index fiber-single mode fiber structure with inner micro-cavity[J]. Optics express, 2018, 26(2):927-934.

    [22] ALI U U M, HARUN S W, ZULKIPLI N F, et al. Simultaneous dual-wavelength Q-switched fiber laser utilizing tungsten sulfide as saturable absorber[J]. Chalcogenide letters, 2021, 18(10):601-606.

    [23] RADZI N M, LATIF A A, ISMAIL M F, et al. Tunable spacing dual-wavelength Q-switched fiber laser based on tunable FBG device[J]. Photonics MDPI, 2021, 8(12):524.

    [24] CHEN S, LU B, WEN Z, et al. Single/dual-wavelength switchable and tunable passively Q-switched erbium-doped fiber laser[J]. Infrared physics & technology, 2020, 111:103519.

    S. F. S. M. Noor, B. A. Ahmad, A. H. A. Rosol, H. Ahmad, R. Apsari, S. W. Harun. Dual-wavelength Q-switched erbium-doped fiber laser using an SMF-MMF-SMF structure and graphene oxide[J]. Optoelectronics Letters, 2022, 18(11): 668
    Download Citation