[1] HILTUNEN J K, QIN Y M. Beta-oxidation-strategies for the metabolism of a wide variety of acyl-CoA esters[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2000, 1484(2/3): 117-128.
[2] SCH NFELD P, WOJTCZAK L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective[J]. Journal of Lipid Research, 2016, 57(6): 943-954.
[3] CINTOLESI A, RODRIGUEZ-MOYA M, GONZALEZ R. Fatty acid oxidation: systems analysis and applications[J]. Wiley Interdisciplinary Reviews-Systems Biology and Medicine, 2013, 5(5): 575-585.
[4] KALLSCHEUER N, POLEN T, BOTT M, et al. Reversal of beta-oxidative pathways for the microbial production of chemicals and polymer building blocks[J]. Metabolic Engineering, 2017, 42: 33-42.
[5] WU L, LIN S, LI D. Comparative inhibition studies of enoyl-CoA hydratase 1 and enoyl-CoA hydratase 2 in long-chain fatty acid oxidation[J]. Organic Letters, 2008, 10(15): 3355-3358.
[6] YAO J, ROCK C O. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics[J]. Journal of Biological Chemistry, 2015, 290(10): 5940-5946.
[7] KUNAU W H, DOMMES V, SCHULZ H. Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress[J]. Progress in Lipid Research, 1995, 34(4): 267-342.
[8] MATTA M K, LIOLIOU E E, PANAGIOTIDIS C H, et al. Interactions of the antizyme AtoC with regulatory elements of the Escherichia coli atoDAEB operon [J]. Journal of Bacteriology, 2007, 189(17): 6324-6332.
[9] BLACK P N, DIRUSSO C C, METZGER A K, et al. Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase[J]. The Journal of Biological Chemistry, 1992, 267(35): 25513-25520.
[10] MUNOZ-ELIAS E J, MCKINNEY J D. Carbon metabolism of intracellular bacteria[J]. Cellular Microbiology, 2006, 8(1): 10-22.
[11] JEON E Y, SONG J W, CHA H J, et al. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane[J]. Journal of Biotechnology, 2018, 281: 161-167.
[12] BLACK P N. Characterization of FadL-specific fatty acid binding in Escherichia coli[J]. Biochimica et Biophysica Acta, 1990, 1046(1): 97-105.
[13] VAN DEN BERG B. The FadL family: unusual transporters for unusual substrates[J]. Current Opinion in Structural Biology, 2005, 15(4): 401-407.
[14] FORD T J, WAY J C. Enhancement of Escherichia coli acyl-CoA synthetase FadD activity on medium chain fatty acids[J]. PeerJ, 2015, 3: e1040.
[15] ZHANG H, WANG P, QI Q. Molecular effect of FadD on the regulation and metabolism of fatty acid in Escherichia coli[J]. FEMS Microbiology Letters, 2006, 259(2): 249-253.
[16] MORGAN-KISS R M, CRONAN J E. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase[J]. Journal of Biological Chemistry, 2004, 279(36): 37324-37333.
[17] CAMPBELL J W, MORGAN-KISS R M, CRONAN J E. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway[J]. Molecular Microbiology, 2003, 47(3): 793-805.
[18] WHEELER P R. Methods in molecular biology (methods and protocols) [M]. PARISH T, BROWN A. (eds): Humana Press, 2009, 465: 47-59.
[19] HE X Y, DENG H N, YANG S Y. Importance of the gamma-carboxyl group of glutamate-462 of the large alpha-subunit for the catalytic function and the stability of the multienzyme complex of fatty acid oxidation from Escherichia coli[J]. Biochemistry, 1997, 36(1): 261-268.
[20] FENG Y, CRONAN J E. Overlapping repressor binding sites result in additive regulation of Escherichia coli FadH by FadR and ArcA[J]. Journal of Bacteriology, 2010, 192(17): 4289-4299.
[21] REN Y, AGUIRRE J, NTAMACK A G, et al. An alternative pathway of oleate beta-oxidation in Escherichia coli involving the hydrolysis of a dead end intermediate by a thioesterase[J]. Journal of Biological Chemistry, 2004, 279(12): 11042-11050.
[22] FENG Y, CRONAN J E. A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW)[J]. Journal of Bacteriology, 2009, 191(20): 6320-6328.
[23] NIE L, REN Y, SCHULZ H. Identification and characterization of Escherichia coli thioesterase III that functions in fatty acid beta-oxidation[J]. Biochemistry, 2008, 47(29): 7744-7751.
[24] NIE L, REN Y, JANAKIRAMAN A, et al. A novel paradigm of fatty acid beta-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli[J]. Biochemistry, 2008, 47(36): 9618-9626.
[25] BRIGHAM C J, BUDDE C F, HOLDER J W, et al. Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression[J]. Journal of Bacteriology, 2010, 192(20): 5454-5464.
[26] FUJITA Y, MATSUOKA H, HIROOKA K. Regulation of fatty acid metabolism in bacteria[J]. Molecular Microbiology, 2007, 66(4): 829-839.
[27] MATSUOKA H, HIROOKA K, FUJITA Y. Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation[J]. Journal of Biological Chemistry, 2007, 282(8): 5180-5194.
[28] FENG S, XU C, YANG K, et al. Either fadD1 or fadD2, which encode acyl-CoA synthetase, is essential for the survival of Haemophilus parasuis SC096[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 72.
[29] HILL C E, METCALF D S, MACINNES J I. A search for virulence genes of Haemophilus parasuis using differential display RT-PCR[J]. Veterinary Microbiology, 2003, 96(2): 189-202.
[30] METCALF D S, MACINNES J I. Differential expression of Haemophilus parasuis genes in response to iron restriction and cerebrospinal fluid[J]. Canadian Journal of Veterinary Research-Revue Canadienne De Recherche Veterinaire, 2007, 71(3): 181-188.
[31] COX J A G, TAYLOR R C, BROWN A K, et al. Crystal structure of Mycobacterium tuberculosis FadB2 implicated in mycobacterial β-oxidation[J]. ACTA Crystallographica Section D-Structural Biology, 2019, 75(Pt 1): 101-108.
[32] VENKATESAN R, WIERENGA R K. Structure of Mycobacterial beta-oxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway[J]. ACS Chemical Biology, 2013, 8(5): 1063-1073.
[33] KENDALL S L, WITHERS M, SOFFAIR C N, et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis[J]. Molecular Microbiology, 2007, 65(3): 684-699.
[34] KENDALL S L, BURGESS P, BALHANA R, et al. Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2[J]. Microbiology-sgm, 2010, 156(Pt 5): 1362-1371.
[35] XU H, SU Z, LI W, et al. MmbR, a master transcription regulator that controls fatty acid beta-oxidation genes in Mycolicibacterium smegmatis[J]. Environmental Microbiology, 2021, 23(2): 1096-1114.
[36] BULLOCK H A, SHEN H, BOYNTON T O, et al. Fatty acid oxidation is required for Myxococcus xanthus development[J]. Journal of Bacteriology, 2018, 200(10): e00572-00517.
[37] BHAT S, AHRENDT T, DAUTH C, et al. Two lipid signals guide fruiting body development of Myxococcus xanthus[J]. mBio, 2014, 5(1): e00939-13.
[38] SHI X, WEGENER-FELDBRUEGGE S, HUNTLEY S, et al. Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus[J]. Journal of Bacteriology, 2008, 190(2): 613-624.
[39] BHAT S, BOYNTON T O, PHAM D, et al. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation[J]. PLoS One, 2014, 9(6): e99622.
[40] KANG Y, ZARZYCKI-SIEK J, WALTON C B, et al. Multiple fadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa[J]. PLoS One, 2010, 5(10): e13557.
[41] KANG Y, NGUYEN D T, SON M S, et al. The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon[J]. Microbiology-sgm, 2008, 154(Pt 6): 1584-1598.
[42] ZHANG L, VERES-SCHALNAT T A, SOMOGYI A, et al. Fatty acid cosubstrates provide beta-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays[J]. Applied and Environmental Microbiology, 2012, 78(24): 8611-8622.
[43] RIEDEL S L, LU J, STAHL U, et al. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products[J]. Applied Microbiology and Biotechnology, 2014, 98(4): 1469-1483.
[44] POHLMANN A, FRICKE W F, REINECKE F, et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16[J]. Nature Biotechnology, 2006, 24(10): 1257-1262.
[45] CHEN J S, COLON B, DUSEL B, et al. Production of fatty acids in Ralstonia eutropha H16 by engineering beta-oxidation and carbon storage[J]. PeerJ, 2015, 3: e1468.
[46] RABERG M, VOLODINA E, LIN K, et al. Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools[J]. Critical Reviews in Biotechnology, 2018, 38(4): 494-510.
[47] IRAM S H, CRONAN J E. The beta-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent[J]. Journal of Bacteriology, 2006, 188(2): 599-608.
[48] LUCAS R L, LOSTROH C P, DIRUSSO C C, et al. Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium[J]. Journal of Bacteriology, 2000, 182(7): 1872-1882.
[49] LESLEY J A, WALDBURGER C D. Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme A[J]. Journal of Bacteriology, 2003, 185(8): 2563-2570.
[50] VIARENGO G, SCIARA M I, SALAZAR M O, et al. Unsaturated long chain free fatty acids are input signals of the Salmonella enterica PhoP/PhoQ regulatory system[J]. Journal of Biological Chemistry, 2013, 288(31): 22346-22358.
[51] ALVAREZ H M, STEINBUCHEL A. Triacylglycerols in prokaryotic microorganisms[J]. Applied Microbiology and Biotechnology, 2002, 60(4): 367-376.
[52] BANCHIO C, GRAMAJO H C. Medium- and long-chain fatty acid uptake and utilization by Streptomyces coelicolor A3(2): first characterization of a Gram-positive bacterial system[J]. Microbiology-sgm, 1997, 143(Pt 7): 2439-2447.
[53] OLUKOSHI E R, PACKTER N M. Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics[J]. Microbiology (Reading), 1994, 140(4): 931-943.
[54] ALVAREZ H M. Triacylglycerol and wax ester-accumulating machinery in prokaryotes[J]. Biochimie, 2016, 120: 28-39.
[55] MENENDEZ-BRAVO S, PAGANINI J, AVIGNONE-ROSSA C, et al. Identification of FadAB complexes involved in fatty acid β-oxidation in Streptomyces coelicolor and construction of a triacylglycerol overproducing strain[J]. Frontiers in Microbidogy, 2017, 8: 1428.
[56] ZHANG Y X, DENOYA C D, SKINNER D D, et al. Genes encoding acyl-CoA dehydrogenase (AcdH) homologues from Streptomyces coelicolor and Streptomyces avermitilis provide insights into the metabolism of small branched-chain fatty acids and macrolide antibiotic production[J]. Microbiology-sgm, 1999, 145(Pt?9): 2323-2334.
[57] YANG S, XI D, WANG X, et al. Vibrio cholerae VC1741 (PsrA) enhances the colonization of the pathogen in infant mice intestines in the presence of the long-chain fatty acid, oleic acid[J]. Microbial Pathogenesis, 2020, 147: 104443.
[58] KAZAKOV A E, RODIONOV D A, ALM E, et al. Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria[J]. Journal of Bacteriology, 2009, 191(1): 52-64.
[59] RAY S, CHATTERJEE E, CHATTERJEE A, et al. A fadD mutant of Vibrio cholerae is impaired in the production of virulence factors and membrane localization of the virulence regulatory protein TcpP[J]. Infection and Immunity, 2011, 79(1): 258-266.
[60] CHATTERJEE E, CHOWDHURY R. Reduced virulence of the Vibrio cholerae fadD mutant is due to induction of the extracytoplasmic stress response[J]. Infection and Immunity, 2013, 81(10): 3935-3941.
[61] BROWN R N, GULIG P A. Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice[J]. Journal of Bacteriology, 2008, 190(23): 7633-7644.
[62] FERREIRA-TONIN M, RODRIGUES-NETO J, HARAKAVA R, et al. Phylogenetic analysis of Xanthomonas based on partial rpoB gene sequences and species differentiation by PCR-RFLP[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62 (Pt 6): 1419-1424.
[63] HE Y W, ZHANG L H. Quorum sensing and virulence regulation in Xanthomonas campestris[J]. FEMS Microbiology Reviews, 2008, 32(5): 842-857.
[65] SARNYAI F, DONKO M B, MATYASI J, et al. Cellular toxicity of dietary trans fatty acids and its correlation with ceramide and diglyceride accumulation[J]. Food and Chemical Toxicology, 2019, 124: 324-335.
[67] WANG L H, HE Y W, GAO Y F, et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues[J]. Molecular Microbiology, 2004, 51(3): 903-912.
[68] DENG Y, WU J E, TAO F, et al. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria[J]. Chemical Reviews, 2011, 111(1): 160-173.
[69] LEE J, WU J, DENG Y, et al. A cell-cell communication signal integrates quorum sensing and stress response[J]. Nature Chemical Biology, 2013, 9(6): 406.
[70] ZHOU L, WANG X Y, SUN S, et al. Identification and characterization of naturally occurring DSF-family quorum sensing signal turnover system in the phytopathogen Xanthomonas[J]. Environmental Microbiology, 2015, 17(11): 4646-4658.
[71] BARBER C E, TANG J L, FENG J X, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule[J]. Molecular Microbiology, 1997, 24(3): 555-566.
[72] SLATER H, ALVAREZ-MORALES A, BARBER C E, et al. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris[J]. Molecular Microbiology, 2000, 38(5): 986-1003.
[73] HE Y W, WU J E, CHA J S, et al. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production[J]. BMC Microbiology, 2010, 10: 187.
[74] BI H, YU Y, DONG H, et al. Xanthomonas campestris RpfB is a fatty Acyl-CoA ligase required to counteract the thioesterase activity of the RpfF diffusible signal factor (DSF) synthase[J]. Molecular Microbiology, 2014, 93(2): 262-275.
[75] ZHOU L, YU Y, CHEN X, et al. The multiple DSF-family QS signals are synthesized from carbohydrate and branched-chain amino acids via the FAs elongation cycle[J]. Scientific Reports, 2015, 5: 13294.
[76] ZHOU L, ZHANG L H, CAMARA M, et al. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover[J]. Trends in Microbiology, 2017, 25(4): 293-303.
[77] DAVIES D G, MARQUES C N H. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms[J]. Journal of Bacteriology, 2009, 191(5): 1393-1403.
[78] BEAULIEU E D, IONESCU M, CHATTERJEE S, et al. Characterization of a diffusible signaling factor from Xylella fastidiosa[J]. mBio, 2013, 4(1): e00539-12.
[79] IONESCU M, YOKOTA K, ANTONOVA E, et al. Promiscuous diffusible signal factor production and responsiveness of the Xylella fastidiosa Rpf system[J]. mBio, 2016, 7(4): e01054-16.
[80] VILCHEZ R, LEMME A, BALLHAUSEN B, et al. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF)[J]. ChemBioChem, 2010, 11(11): 1552-1562.
[81] LI K, HOU R, XU H, et al. Two functional fatty acyl coenzyme A ligases affect free fatty acid metabolism to block biosynthesis of an antifungal antibiotic in Lysobacter enzymogenes[J]. Applied and Environmental Microbiology, 2020, 86(10): e00309-20.
[82] BRAHMBHATT V V, ALBERT C J, ANBUKUMAR D S, et al. Omega-oxidation of alpha-chlorinated fatty acids identification of alpha-chlorinated dicarboxylic acids[J]. Journal of Biological Chemistry, 2010, 285(53): 41255-41269.
[83] SEMBA R D, TREHAN I, LI X, et al. Environmental enteric dysfunction is associated with carnitine deficiency and altered fatty acid oxidation[J]. Ebiomedicine, 2017, 17: 57-66.